DEFINITION OF THE ALFVÉN MODE IN INHOMOGENEOUS MAGNETIC FIELD
Abstract and keywords
Abstract (English):
The article is methodological and defines the concept of the linear Alfvén mode. There are two definitions — electrodynamic and hydrodynamic. In the former, the Alfvén mode is considered a wave with a potential transverse electric field. In the latter, waves are more often identified with the Alfvén mode, plasma motion in which is purely vortex. While these definitions are equivalent for homogeneous plasma, they are incompatible if the field line curvature is taken into account: if the transverse electric field is purely potential, the plasma speed has not only a vortex component, but also a potential one, and vice versa. The electrodynamic and hydrodynamic definitions are equivalent only if the wave electric field completely lacks a component along the binormal to the external magnetic field. However, such waves do not exist in nature.

Keywords:
Alfvén waves, magnetosphere, solar corona, field line curvature
Text
Publication text (PDF): Read Download
References

1. Alperovich L.S., Fedorov E.N. Hydromagnetic Waves in the Magnetosphere and the Ionosphere. Springer. 2007, 426 p. DOI:https://doi.org/10.1007/978-1-4020-6637-5.

2. Belcher J.W., Davis L. Large-amplitude Alfvén waves in the interplanetary medium 2. J. Geophys. Res. 1971, vol. 76, iss. 16, pp. 3534-3563. DOI:https://doi.org/10.1029/JA076i016p03534.

3. Chelpanov A.A., Chelpanov M.A., Kobanov N.I., Sotnikova R.T. Comparing the main oscillation characteristics in the solar chromosphere and magnetosphere based on studies made at ISTP SB RAS. Solar-Terr. Phys. 2018, vol. 4, iss. 4, pp. 12-18. DOI:https://doi.org/10.12737/stp-44201802.

4. Cheremnykh O.K., Parnowski A.S., Burdo O.S. Ballooning modes in the inner magnetosphere of the Earth. Planetary Space Sci. 2004, vol. 52, pp. 1217-1229. DOI: 10.1016/ j.pss.2004.07.014.

5. Jess D.B., Mathioudakis M., Erdélyi R., Crockett P.J., Keenan F.P., Christian D.J. Alfvén waves in the lower solar atmosphere. Science. 2009, vol. 323, iss. 5921, pp. 1582-1585. DOI:https://doi.org/10.1126/science.1168680.

6. Kadomtsev B.B. Kollektivnye yavleniya v plazme [Collective phenomena in plasma]. Moscow, Nauka, 1988. 304 p. (In Russian).

7. Klimushkin D.Yu. Method of description of the Alfvén and magnetosonic branches of inhomogeneous plasma oscillations. Plasma Phys. Rep. 1994, vol. 20, pp. 280-286.

8. Kobanov N.I., Chupin S.A., Chelpanov A.A. On searching for observational manifestations of Alfvén waves in solar faculae. Astron. Lett. 2017, vol. 43, pp. 844-853. DOI: 10.1134/ S1063773717110044.

9. Leonovich A.S., Kozlov D.A. Coupled guided modes in the magnetotails: spatial structure and ballooning instability. Astrophys. Space Sci. 2014, vol. 353, pp. 9-23. DOI:https://doi.org/10.1007/s10509-014-1999-3.

10. Leonovich A.S., Mazur V.A. Lineinaya teoriya MGD kolebanii v magnitosfere [Linear Theory of MHD Oscillations in the Magnetosphere]. Moscow, Fizmatlit, 2016, 480 p. (In Russian).

11. Mager O.V. Alfvén waves generated through the drift-bounce resonant instability in the ring current: A THEMIS multi-spacecraft case study. J. Geophys. Res.: Space Phys. 2021, vol. 126, e2021JA029241. DOI:https://doi.org/10.1029/2021JA029241.

12. Mikhailova O.S., Smotrova E.E., Mager P.N. Resonant generation of an Alfvén wave by a substorm injected electron cloud: A Van Allen probe case study. Geophys. Res. Lett. 2022, vol. 49, e2022GL100433. DOI:https://doi.org/10.1029/2022GL100433.

13. Nakariakov V.M., Pilipenko V., Heilig B., Jelinek P., Karlicky M., Klimushkin D.Y., et al. Magnetohydrodynamic oscillations in the solar corona and Earth’s magnetosphere: towards consolidated understanding. Space Sci. Rev. 2016, vol. 200, pp. 75-203. DOI:https://doi.org/10.1007/s11214-015-0233-0.

14. Rubtsov A.V., Mager P.N., Klimushkin D.Yu. Ballooning instability of azimuthally small scale coupled Alfvén and slow magnetoacoustic modes in two-dimensionally inhomogeneous magnetospheric plasma. Physics of Plasmas. 2018, vol. 25, 102903. DOI:https://doi.org/10.1063/1.5051474.

15. Ruderman M.S., Petrukhin N.S. Existence of purely Alfvén waves in magnetic flux tubes with arbitrary cross-sections. Physics. 2022, vol. 4, pp. 865-872. DOI:https://doi.org/10.3390/physics4030055.

16. Shi X., Hartinger M.D., Baker J.B.H., Ruohoniemi J.M., Lin D., Xu Z., et al. Multipoint conjugate observations of dayside ULF waves during an extended period of radial IMF. J. Geophys. Res.: Space Phys. 2020, vol. 125, e2020JA028364. DOI:https://doi.org/10.1029/2020JA028364.

17. Southwood D.J., Saunders M.A. Curvature coupling of slow and Alfvén MHD waves in a magnetotail field configuration. Planetary Space Sci. 1985, vol. 33, pp. 127-134. DOI:https://doi.org/10.1016/0032-0633(85)90149-7.

18. Tamao T. Direct contribution of oblique field-aligned currents to ground magnetic fields. J. Geophys. Res. 1986, vol. 91, iss. A1. P. 183-189. DOI:https://doi.org/10.1029/JA091iA01p00183.

19. Tu C.Y., Marsch E. MHD structures, waves and turbulence in the solar wind: Observations and theories. Space Sci. Rev. 1995, vol. 73, pp. 1-210. DOI:https://doi.org/10.1007/BF00748891.

20. Yamamoto K., Seki K., Matsuoka A., Imajo S., Teramoto M., Kitahara M., et al. A Statistical study of the solar wind dependence of multi-harmonic toroidal ULF waves observed by the Arase satellite. J. Geophys. Res.: Space Phys. 2022, vol. 127, e2021JA029840. DOI:https://doi.org/10.1029/2021JA029840.

Login or Create
* Forgot password?