ELECTROMAGNETIC ULF/ELF OSCILLATIONS CAUSED BY THE ERUPTION OF THE TONGA VOLCANO
Abstract and keywords
Abstract (English):
The eruption of the Tonga volcano on January 13 and 15, 2022 and related intense lightning activity led to the excitation of a number of specific electromagnetic oscillations in different frequency ranges. We examine properties of these oscillations, using data from magnetometers of various types located in Kamchatka and in the Pacific region. We confirmed that there might have been a geomagnetic response to the formation of an acoustic resonance between the Earth surface and the ionosphere: localized harmonic oscillations with a frequency 3.5–4.0 mHz, which lasted for ~1.5 hr, were detected ~15 min after the beginning of the eruption at distance of ~800 km. An increase was observed in the intensity of the Schumann resonance at stations in the Far East. Broadband emission stimulated by intense volcanic lightning was detected to occur in the Pc1 range (2–5 Hz). The emission presumably results from the excitation of the magnetosonic waveguide in the upper ionosphere by lightning activity.

Keywords:
volcanic eruption, atmospheric waves, acoustic resonance, Schumann resonance, Pc1, ionospheric waveguide
Text
Publication text (PDF): Read Download
References

1. Aplin K.L., Bennett A.J., Harrison R.G., Houghton I.M.P. Electrostatics and in situ sampling of volcanic plumes. Volcanic Ash: Hazard Observation and Monitoring. Amsterdam: Elsevier, 2016, pp. 99-113. DOI:https://doi.org/10.1016/B978-0-08-100405-0.00010-0.

2. Arason P., Bennett A.J., Burgin L.E. Charge mechanism of volcanic lightning revealed during the 2010 eruption of Eyjafjallajökull. J. Geophys. Res. 2011, vol. 116, B00C03. DOI:https://doi.org/10.1029/2011JB008651.

3. Astafyeva E., Maletckii B., Mikesell T.D., Munaibari E., Ravanelli M., Coisson P., et al. The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophys. Res. Lett. 2022, vol. 49, e2022GL098827. DOI:https://doi.org/10.1029/2022GL098827.

4. Behnke S., Edens H., Thomas R., Smith C., Mcnutt S., Van Eaton A., Cigala V. Investigating the origin of continual radio frequency impulses during explosive volcanic eruptions. J. Geophys. Res.: Atmos. 2018, vol. 123, iss. 8, pp. 4157-4174. DOI:https://doi.org/10.1002/2017JD027990.

5. Choosakul N., Saito A., Iyemori T., Hashizume M. Excitation of 4-min periodic ionospheric variations following the great Sumatra-Andaman earthquake in 2004. J. Geophys. Res. 2009, vol. 114, A10313. DOI:https://doi.org/10.1029/2008JA013915.

6. Fedorov E., Mazur N., Pilipenko V., Baddeley L. Modeling the high-latitude ground response to the excitation of the ionospheric MHD modes by atmospheric electric discharge. J. Geophys. Res. 2016, vol. 121, pp. 11282-11301. DOI: 10.1002/ 2016JA023354.

7. Fraser B.J. Geomagnetic micropulsations from the high altitude nuclear explosion above Johnston Island. J. Geophys. Res. 1962, vol. 67, p. 4926.

8. Harding B.J., Wu Y.-J.J., Alken P., Yamazaki Y., Triplett C.C., Immel T.J., et al. Impacts of the January 2022 Tonga volcanic eruption on the ionospheric dynamo: ICON-MIGHTI and Swarm observations of extreme neutral winds and currents. Geophys. Res. Lett. 2022, vol. 49, e2022GL098577. DOI:https://doi.org/10.1029/2022GL098577.

9. Harper M.J., Cimarelli C., Cigala V., Kueppers U., Dufek J. Charge injection into the atmosphere by explosive volcanic eruptions through triboelectrication and fragmentation charging. Earth and Planetary Sci. Lett. 2021, vol. 574, 117162. DOI:https://doi.org/10.1016/j.epsl.2021.117162.

10. Iyemori T., Nose M., Han D.-S., Gao Y., Hashizume M., Choosakul N., Shinagawa H., et al. Geomagnetic pulsations caused by the Sumatra earthquake on December 26, 2004. Geophys. Res. Lett. 2005, vol. 32, L20807. DOI: 10.1029/ 2005GL024083.

11. Iyemori T., Nishioka M., Otsuka Y., Shinbori A. A confirmation of vertical acoustic resonance and field-aligned current generation just after the 2022 Hunga Tonga Hunga Ha’apai volcanic eruption. Earth, Planets and Space. 2022, vol. 74, 103. DOI:https://doi.org/10.1186/s40623-022-01653-y.

12. James M.R., Wilson L., Lane S.J., Gilbert J.S., Mather T.A., Harrison R.G., Martin R.S. Electrical charging of volcanic plumes. Planetary Atmospheric Electricity. NY, Springer, 2008, pp. 399-418.

13. Kanamori H., Mori J. Harmonic excitation of mantle Rayleigh waves by the 1991 eruption of Mount Pinatubo, Philippines. Geophys. Res. Lett. 1992, vol. 19, pp. 721-724. DOI: 10.1029/ 92GL00258.

14. Kanamori H., Mori J., Harkrider D.G. Excitation of atmospheric oscillations by volcanic eruptions. J. Geophys. Res. 1994, vol. 99, pp. 21947-21961.

15. Kunitsyn V.E., Shalimov S.L. Ultralow-frequency variations of the magnetic field during the propagation of acoustic-gravity waves in the ionosphere. Herald of Moscow University. Ser. 3. Phys. Astron. 2011, no. 5, p. 75. (In Russian).

16. Lane S.J., James M.R., Gilbert J.S. Electrostatic phenomena in volcanic eruptions. J. Phys.: Conf. Ser. 2011, vol. 301, 012004, pp. 1-4. DOI:https://doi.org/10.1088/1742-6596/301/1/012004.

17. Matsumura M., Iyemori T., Tanaka Y., Han D., Nose M., Utsugi M., Oshiman N., et al. Acoustic resonance between ground and thermosphere. Data Sci. J. 2009, vol. 8, pp. 68-77.

18. Mazur N.G., Fedorov E.N., Pilipenko V.A., Vakhnina V.V. ULF electromagnetic field in the upper ionosphere excited by lightning. J. Geophys. Res. 2018, vol. 123, pp. 6692-6702. DOI:https://doi.org/10.1029/2018JA025622.

19. Nekrasov A.K., Pilipenko V.A. MHD waves in the collisional plasma of the solar corona and terrestrial ionosphere. Solar-Terr. Phys. 2020, vol. 6, no. 4, pp. 17-23. DOI:https://doi.org/10.12737/stp-64202003.

20. Nickolaenko A.P., Schekotov A.Y., Hayakawa M., Romero R., Izutsu J. Electromagnetic manifestations of Tonga eruption in Schumann resonance band. J. Atmos. Solar-Terr. Phys. 2022, vol. 237, 105897. DOI:https://doi.org/10.1016/j.jastp.2022.105897.

21. Nishida K., Kobayashi N., Fukao Y. Resonant oscillations between the solid Earth and the atmosphere. Science. 2000, vol. 287, pp. 2244-2246.

22. Pogoreltsev A.I. Disturbances of electric and magnetic fields caused by the interaction of atmospheric waves with ionospheric plasma, Geomagnetism Aeronomy. 1989, vol. 29, no.2, pp. 286-292. (In Russian).

23. Rulenko O.P., Klimin N.N., Dyakonova I.I., Kiriyanov V.Yu. Studies of the electrization of clouds created by the dispersion of volcanic ash. Volcanology and seismology. 1986, no. 5, pp. 17-29. (In Russian).

24. Saito A., Tsugawa T., Otsuka Y., Nishioka M., Iyemori T., Matsumura M., Saito S., et al. Acoustic resonance and plasma depletion detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space. 2011, vol. 63, pp. 863-867.

25. Shinagawa H., Iyemori T., Saito S., Maruyama T. A numerical simulation of ionospheric and atmospheric variations associated with the Sumatora earthquake on December 26, 2004. Earth Planets Space. 2007, vol. 59, pp. 1015-1026.

26. Shiokawa K., Nomura R., Sakaguchi K., Otsuka Y., Hamaguchi Y., Satoh M., Katoh Y., et al. The STEL induction magnetometer network for observation of high-frequency geomagnetic pulsations. Earth Planets Space. 2010, vol. 62, pp. 517-524.

27. Sorokin V.M., Fedorovich G.V. Fisika medlennykh MGD-voln v ionosfernoi plazme [Physics of Slow MHD Waves in Ionospheric Plasma]. Moscow, Energoizdat, 1982, 135 p. (In Russian).

28. Sorokin V.M., Yashchenko A.K., Surkov V.V. Generation of geomagnetic disturbances in the ionosphere by a tsunami wave. Geomagnetism and Aeronomy. 2019, vol. 59, no. 2, pp. 221-233. DOI:https://doi.org/10.1134/S0016793219020130.

29. Tahira M. Acoustic resonance of the atmosphere at 3.7 mHz. J. Atmos. Sci. 1995, vol. 52, pp. 2670-2674.

30. Themens D.R., Watson C., Žagar N., Vasylkevych S., Elvidge S., McCaffrey A., Prikryl P., et al. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption, Earth and Space Science Open Archive, 2022. DOI:https://doi.org/10.1002/essoar. 10510350.1.

31. Thomas R.J., Krehbiel P., Rison W., Edens H., Aulich G., Winn W.P., Mcnutt S.R., Tytgat G., Clark E. Lightning and electrical activity during the 2006 eruption of Augustine volcano. The 2006 eruption of Augustine volcano, Alaska. Professional Paper 1769. U.S. Department of the Interior; U.S. Geological Survey, 2007, pp. 579-608.

32. Van Eaton A.R., Schneider D.J., Smith C.M., Haney M.M., Lyons J.J., Said R., Fee D., Holzworth R.H., Mastin L.G. Did ice-charging generate volcanic lightning during the 2016-2017 eruption of Bogoslof volcano, Alaska? Bulletin of Volcanology. 2020, vol. 82. DOI:https://doi.org/10.1007/s00445-019-1350-5.

33. Yamazaki Y., Soares G., Matzka J. Geomagnetic detection of the atmospheric acoustic resonance at 3.8 mHz during the Hunga Tonga eruption event on 15 January 2022. J. Geophys. Res. 2022, vol. 127, e2022JA030540. DOI:https://doi.org/10.1029/2022JA030540.

34. Yasyukevich Yu.V., Edemsky I.K., Perevalova N.P., Polyakova A.S. Otklik ionosfery na gelio- i geofizicheskie vozmushchayushchie factory po dannym GPS [Response of the ionosphere to helio- and geophysical disturbing factors according to GPS data]. Irkutsk, Irkutsk State University Publ., 2013, 259 p. (In Russian).

35. Yuen D.A., Scruggs M.A., Spera F.J., Zheng Y., Hu H., McNutt S.R., Thompson G., et al. Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha’apai volcano. Earthquake Research Advances. 2022, vol. 2, iss. 3, 100134. DOI:https://doi.org/10.1016/j.eqrea.2022.100134.

36. Zettergren M.D., Snively J.B. Ionospheric response to infrasonic-acoustic waves generated by natural hazard events. J. Geophys. Res. 2015, vol. 120, pp. 8002-8024. DOI: 10.1002/ 2015JA0211-16.

37. Zhang S-R., Vierinen J., Aa E., Goncharenko L.P., Erickson P.J., Rideout W., Coster A.J., Spicher A. 2022 Tonga volcanic eruption induced global propagation of ionospheric disturbances via Lamb waves. Front. Astron. Space Sci. 2022, vol. 9, 871275. DOI:https://doi.org/10.3389/fspas.2022.871275.

38. URL: www.intermagnet.org (accessed September 29, 2022).

39. URL: https://graphics.reuters.com/TONGA-VOLCANO/ LIGHTNING/zgpomjdbypd/ (accessed September 29, 2022).

Login or Create
* Forgot password?