Abstract and keywords
Abstract (English):
We have studied variations in ionospheric and geomagnetic parameters in the Northern Hemisphere during a series of magnetic storms in March 2012 by analyzing data from the Eurasian mid-latitude ionosonde chain, mid- and high-latitude chains of magnetometers of the global network INTERMAGNET. We have confirmed manifestations of the longitude inhomogeneity of ionospheric effects, which is associated with the irregular structure of the longitudinal variability of geomagnetic field components. The complex physics of the long magnetically disturbed period in March 2012 with switching between positive and negative phases of the ionospheric storm in the same period of the magnetic storm for different spatial regions is emphasized. The change in the effects of the ionospheric storm during this period might have been associated with the superposition in the mid-latitude region of the competing processes affecting the ionospheric ionization whose sources were in the auroral and equatorial ionosphere. We have compared the scenarios for the development of ionospheric disturbances under equinox conditions during magnetic storms in March 2012, October 2016, and March 2015.

ionosonde chain, ionospheric disturbances, geomagnetic field variations, geomagnetic storm
Publication text (PDF): Read Download

1. Astafyeva E.I. Dayside ionospheric uplift during strong geomagnetic storms as detected by the CHAMP, SAC-C, TOPEX and Jason-1 satellites. Adv. Space Res. 2009, vol. 43, iss. 11, pp. 1749–1756. DOI: 10.1016/j.asr.2008.09.036.

2. Astafyeva E., Zakharenkova I, Förster M. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview. J. Geophys. Res.: Space Phys. 2015, vol. 120, pp. 9023–9037. DOI: 10.1002/2015JA021629.

3. Belehaki A., Kutiev I., Marinov P., Tsagouri I, Koutroumbas K., Elias P. Ionospheric electron density perturbations during the 7–10 March 2012 geomagnetic storm period. Adv. Space Res. 2017, vol. 59, iss. 4, pp. 1041–1056. DOI: 10.1016/j.asr.2016.11.031.

4. Blanc M., Richmond A.D. The ionospheric disturbance dynamo. J. Geophys. Res. 1980, vol. 85, pp. 1669–1686.

5. Buonsanto M.J. Ionospheric storms — a review. Space Sci. Rev. 1999, vol. 88,pp. 563–601.

6. Burešová D., Laštovička J., De Franceschi G. Manifestation of strong geomagnetic storms in the ionosphere above Europe. Space Weather. Springer, 2007, pp. 185–202.

7. Chernigovskaya M.A., Shpynev B.G., Khabituev D.S., Ratovskii K.G., Belinskaya A.Yu., Stepanov A.E., et al. Dolgotnye variatsii ionosfernykh i geomagnitnykh parametrov v severnom polusharii vo vremya sil’nykh magnitnykh bur’ 2015 g. (Longitudinal variations of geomagnetic and ionospheric parameters during severe magnetic storms in 2015), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, vol. 16, no. 5, pp. 336–347. DOI: 10.21046/2070-7401-2019-16-5-336-347. (In Russian).

8. Chernigovskaya M.A., Shpynev B.G., Yasyukevich A.S., Khabituev D.S. Ionosfernaya dolgotnaya izmenchivost’ v severnom polusharii vo vremya magnitnykh bur' po dannym ionozondov i GPS/GLONASS (Ionospheric longitudinal variability in the Northern Hemisphere during magnetic storm from the ionosonde and GPS/GLONASS data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, vol. 17, no. 4, pp. 269–281. DOI: 10.21046/2070-7401-2020-17-4-269-281. (In Russian).

9. Chernigovskaya M.A., Shpynev B.G., Yasyukevich A.S., Khabituev D.S., Ratovsky K.G., Belinskaya A.Yu., et al. Longitudinal variations of geomagnetic and ionospheric parameters in the Northern Hemisphere during magnetic storms according to multi-instrument observations. Adv. Space Res. 2021a, vol. 67, no. 2, pp. 762–776. DOI: 10.1016/j.asr.2020.10.028.

10. Chernigovskaya M.A., Shpynev B.G., Yasyukevich A.S., Khabituev D.S., Ratovskii K.G., Belinskaya A.Yu., et al. Longitudinal variations in the response of the mid-latitude ionosphere of the Northern Hemisphere to the October 2016 geomagnetic storm using multi-instrumental observations. Current problems in Remote Sensing of the Earth From Space. 2021b, vol. 18, no. 5, pp. 305–317. DOI: 10.21046/2070-7401-2021-18-5-305-317. (In Russian).

11. Danilov A.D. Ionospheric F-region response to geomagnetic disturbances. Adv. Space Res. 2013, vol. 52, pp. 343–366. DOI: 10.1016/j.asr.2013.04.019.

12. Dmitriev A.V., Huang C.-M., Brahmanandam P.S., Chang L.C., Chen K.-T., Tsai L.-C. Longitudinal variations of positive dayside ionospheric storms related to recurrent geomagnetic storms. J. Geophys. Res.: Space Phys. 2013, vol. 118, rr. 6806–6822. DOI: 10.1002/jgra.50575.

13. Dudok de Wit T., Watermann J. Solar forcing of the terrestrial atmosphere. Comptes Rendus Geoscience. 2009, vol. 342, no. 4-5, rr. 259–272. DOI: 10.1016/j.crte.2009.06.001.

14. Habarulema J.B., Katamzi Z.T., Yizengaw E. First observations of poleward large-scale traveling ionospheric disturbances over the African sector during geomagnetic storm conditions. J. Geophys. Res.: Space Phys. 2015, vol. 120, rr. 6914–6929. DOI: 10.1002/2015JA021066.

15. Habarulema J.B., Katamzi Z.T., Yizengaw E., Yamazaki Y., Seemala G. Simultaneous storm time equatorward and poleward large-scale TIDs on a global scale. Geophys. Res. Lett. 2016, vol. 43, rr. 6678–6686. DOI: 10.1002/2016GL069740.

16. Hafstad L.R., Tuve M.A. Note on Kennely-Heaviside layer observations during a magnetic storm. Terrestrial magnetism and atmospheric electricity. 1929, vol. 34, no. 1, rr. 39–43.

17. Krypiak-Gregorczyk A. Ionosphere response to three extreme events occurring near spring equinox in 2012, 2013 and 2015, observed by regional GNSS-TEC model. J. Geodesy. 2019, vol. 93, rr. 931–951. DOI: 10.1007/s00190-018-1216-1

18. Kunitsyn V.E., Padokhin A.M., Kurbatov G.A., Yasyukevich Yu.V., Morozov Yu.V. Ionospheric TEC estimation with the signals of various geostationary navigational satellites. GPS Solutions. 2016, vol. 20, pp. 877-884. DOI: 10.1007/s10291-015-0500-2.

19. Li Q., Liu L., Balan N., Huang H., Zhang R., Chen Y., Le H. Longitudinal structure of the midlatitude ionosphere using COSMIC electron density profiles. J. Geophys. Res.: Space Phys. 2018, vol. 123, rr. 8766–8777. DOI: 10.1029/2017JA024927.

20. Loewe C.A., Prölss G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. 1997, vol. 102, iss. A7, pp. 14,209–14,213.

21. Mansilla G.A. Mid-latitude ionospheric effects of a great geomagnetic storm. J. Atmos. Solar-Terr. Phys. 2004, vol. 66, rr. 1085–1091. DOI: 10.1016/j.jastp.2004.04.003.

22. Mansilla G.A., Zossi M.M. Longitudinal Variation of the Ionospheric Response to the 26 August 2018 Geomagnetic Storm at Equatorial/Low Latitudes. Pure Appl. Geophys. 2020, vol. 177, rr. 5833–5844. DOI: 10.1007/s00024-020-02601-1.

23. Matsushita S. A study of the morphology of ionospheric storms. J. Geophys. Res. 1959, vol. 64, no. 3, rr. 305–321. DOI: 10.1029/JZ064i003p00305.

24. Mendillo M. Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys. 2006, vol. 44, RG4001. DOI: 10.1029/2005RG000193.

25. Moro J., Xu J., Denardini C.M., Resende L.C.A., Silva R.P., Liu Z., Li H., Yan C., Wang C., Schuch N.J. On the sources of the ionospheric variability in the South American Magnetic Anomaly during solar minimum. J. Geophys. Res.:Space Phys. 2019, vol. 124, rr. 7638–7653. DOI: 10.1029/2019JA026780.

26. Polyakov V.M., Shchepkin L.A., Kazimirovsky E.S., Kokourov V.D. Ionosfernye processy (Ionospheric processes), Novosibirsk: Nauka Pabl., 1968, 535 p. (In Russian).

27. Prölss G.W. Ionospheric F-region storms. Handbook of atmospheric electrodynamics. CRC Press, Boca Raton. 1995, vol. 2, Ch. 8, pp. 195–248.

28. Prölss G.W., Brace L.H., Mayr H.G., Carignan G.R., Killeen T.L. Klobuchar J.A. Ionospheric storm effects at subauroral latitudes: A case study. J. Geophys. Res. 1991, vol. 96. pp. 1275–1288.

29. Ratovsky K.G., Klimenko M.V., Klimenko V.V., Chirik N.V., Korenkova N.A., Kotova D.S. After-effects of geomagnetic storms: statistical analysis and theoretical explanation. Solar-Terr. Phys. 2018, vol. 4, iss. 4, pp. 26–32. DOI: 10.12737/stp-44201804. 32-42.

30. Rishbeth H. How the thermospheric circulation affects the ionospheric F2-layer. J. Atmos. Solar-Terr. Phys. 1998, vol. 60, pp. 1385–1402.

31. Shpynev B.G., Zolotukhina N.A., Polekh N.M., Ratovsky K.G., Chernigovskaya M.A., Belinskaya A.Yu., et al. The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain. J. Atmos. Solar-Terr. Phys. 2018, vol. 180, pp. 93–105. DOI: 10.1016/j.jastp.2017.10.014.

32. Tsurutani B., Mannucci A., Iijima B., Abdu M.A., Sobral J.H.A., Gonzalez W., et al. Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J. Geophys. Res. 2004, vol. 109, A08302. DOI: 10.1029/2003JA010342.

33. Tsurutani B., Echer E., Shibata K., Verkhoglyadova O., Mannucci A., Gonzalez W., et al. The interplanetary causes of geomagnetic activity during the 7–17 March 2012 interval: a CAWSES II overview. J. Space Weather Space Climate. 2014, vol. 4, no. A02. DOI: 10.1051/ swsc/2013056.

34. Verkhoglyadova O.P., Tsurutani B.T., Mannucci A.J., Mlynczak M.G., Hunt L.A., Paxton L.J., Komjathy A. Solar wind driving of ionosphere-thermosphere responses in three storms near St. Patrick’s Day in 2012. 2013, and 2015. J. Geophys. Res.: Space Phys. 2016, vol. 121, pp. 8900–8923. DOI: 10.1002/2016JA022883.

35. Wang H., Zhang K. Longitudinal structure in electron density at mid-latitudes: upward-propagating tidal effects. Earth, Planets and Space. 2017, iss. 1, article id. 11. DOI: 10.1186/s40623-016-0596-9.

36. URL: (accessed July 19, 2022).

37. URL: (accessed July 19, 2022).

38. URL: (accessed July 19, 2022).

39. URL: (accessed July 19, 2022).

Login or Create
* Forgot password?