OVERVIEW OF GEOMETRIC WAYS TO INCREASE THE CONSTRUCTIONS’ SPECIFIC STRENGTH: TOPOLOGICAL OPTIMIZATION AND FRACTAL STRUCTURES
Abstract and keywords
Abstract (English):
The paper is an overview of geometric methods for increasing the specific strength of parts and constructions. In the making of engineering knowledge it had been deduced by theoretical and empirical ways a number of rules for specifying the shape of bodies withstanding the loads applied to them. So, in construction, they prefer to use an I-beam instead of a beam with rectangular section, since the first one is able to withstand a large load with a similar mass and the same material, that is, with a certain loading scheme, the I-beam has a greater specific strength due to the features of its geometry. The basic principles of creating such a geometry have been considered in this paper. With the development of the theory of strength of materials, as well as methods for automatization of design and strength calculations, it became possible to create the shape of parts optimized for specific loads. Computer generation of such a form is called topological optimization. A lot of modern research has been devoted to the development and improvement of algorithms for topological optimization (TO). In this paper have been described some of TO algorithms, and has been presented a general analysis of optimized forms, demonstrating their similarity to fractals. Despite the rapid development of topological optimization, it has constraints, some of which can be circumvented by using fractal structures. In this study a new classification of fractals is presented, and the possibility of their use to create parts and constructions of increased specific strength is considered. Examples for successful application of fractal geometry in practice are also presented. The combination of principles for designing strong parts and fractal shaping algorithms will make it possible in the future to develop the structure of strong elements applicable to increase the constructions’ specific strength. Further research will be devoted to this.

Keywords:
specific strength; geometric methods of parts modification; topology optimization; fractal structures of increased strength
References

1. Bashin K. A. Metody topologicheskoy optimizacii konstrukciy, primenyayuschiesya v aerokosmicheskoy otrasli [Tekst] / K. A. Bashin, R. A. Torsunov, S.V. Semenov //Vestnik Permskogo nacional'nogo issledovatel'skogo politehnicheskogo universiteta. Aerokosmicheskaya tehnika. - 2017. - № 4. - 51 s.

2. Boykov A.A. O sozdanii fraktal'nyh obrazov dlya dizayna i poligrafii i nekotoryh geometricheskih obobscheniyah, svyazannyh s nimi [Tekst] / A.A. Boykov [i dr.] // Problemy kachestva graficheskoy podgotovki studentov v tehnicheskom vuze: tradicii i innovacii. - 2019. - T. 1. - S. 325-339.

3. Burova E. M. Postroenie krivyh gil'berta v sisteme matematika [Tekst] / E. M. Burova // Al'manah mirovoy nauki. - 2016. - № 8. - S. 6-9.

4. Vardanyan G.S. Soprotivlenie materialov s osnovami teorii uprugosti i plastichnosti [Tekst] / G.S. Vardanyan // Izdatel'stvo ASV. - 2011. - 566 s.

5. Vasil'ev B. E. Analiz vozmozhnosti primeneniya topologicheskoy optimizacii pri proektirovanii neohlazhdaemyh rabochih lopatok turbin [Tekst] / B.E. Vasil'ev, L.A. Magerramova // Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva (nacional'nogo issledovatel'skogo universiteta). - 2015. - T. 14. - № 3. - S. 13-24.

6. Vlasenkov A. N. Optimizaciya konstrukciy izdeliy s primeneniem sistem avtomaticheskoy optimizacii [Tekst] / A.N. Vlasenkov, A.P. Pavlov, D.Yu. Pasechnik // Nauka i biznes: puti razvitiya. - 2020. - № 10. - S. 16-21.

7. Efremov A.V. Prostranstvennye geometricheskie yacheyki - kvazimnogogranniki [Tekst] / A.V. Efremov [i dr.] // Geometriya i grafika. - 2021. - T. 9. -№ 3. - S. 30-38. - DOI:https://doi.org/10.12737/2308-4898-2021-9-3-30-38.

8. Efremov A.V. «Pravil'nye» mnogopsevdogranniki, obrazovannye otsekami giperbolicheskih paraboloidov [Tekst] / A.V. Efremov // Zhurnal tehnicheskih issledovaniy. - 2020. - T. 6. - № 2. - S. 21-28.

9. Zhiharev L. A. Oblachnaya optimizaciya topologii [Tekst] / L.A. Zhiharev // Zhurnal tehnicheskih issledovaniy. - 2020. - T. 6. - № 2. - S. 15-20.

10. Zhiharev L. A. Fraktal'nye grafiki effektivnosti optimizacii topologii v reshenii problemy zavisimosti prochnosti ot setki [Tekst] / L.A. Zhiharev // Geometriya i grafika. - 2020. - T. 8. - № 3. - S. 25-35. - DOI:https://doi.org/10.12737/2308-4898-2020-25-35

11. Zhiharev L. A. Fraktal'nye razmernosti [Tekst] / L.A. Zhiharev // Geometriya i grafika. - 2018. - T. 6. - № 3. - S. 33-48. - DOI:https://doi.org/10.12737/article_5bc45918192362.77856682

12. Zhiharev L.A. Fraktaly v trehmernom prostranstve. i-fraktaly [Tekst] / L.A. Zhiharev // Geometriya i grafika. - 2017. - T. 5. - № 3. - S. 51-66. - DOI:https://doi.org/10.12737/article_59bfa55ec01b38.55497926.

13. Ivaschenko A.V. O vliyanii parametrov yadra na formoobrazovanie poliedrov, poluchennyh proektivograficheskim metodom [Tekst] / A.V. Ivaschenko, T.M. Kondrat'eva // Geometriya i grafika. - 2019. - T. 7. - № 4. - S. 57-64. - DOI:https://doi.org/10.12737/2308-4898-2020-57-64.

14. Ignat'ev S. A. Funkcional'nye vozmozhnosti sredy Wolfram Mathematica dlya vizualizacii krivyh liniy i poverhnostey [Tekst] / S.A. Ignat'ev, A.I. Folomkin, E.H. Muratbakeev // Geometriya i grafika. - 2021. - T. 9 - № 1. - S. 29-38. - DOI: /10.12737/2308-4898-2021-9-1-29-38.

15. Kamardina N. V. Topologicheskaya optimizaciya detali «Ser'ga» [Tekst] / N.V. Kamardina [i dr.] // Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Inzhenernye issledovaniya. - 2020. - T. 21. - № 1. - S. 25-32.

16. Kantor G. Trudy po teorii mnozhestv [Tekst] / G. Kantor. - M.: Nauka. - 1985. - 124 s.

17. Oganesyan P. A. Optimizaciya topologii konstrukciy v pakete ABAQUS [Tekst] / P.A. Oganesyan, S.N. Shevcov // Izvestiya Samarskogo nauchnogo centra Rossiyskoy akademii nauk. - 2014. - T. 16. - № 6. - S. 543-549.

18. Orlov P. I. Osnovy konstruirovaniya: sprav.-metod. posobie [Tekst]. V 2 kn. / P.I. Orlov; /pod red. P.N. Uchaeva. - M.: Mashinostroenie, 1988. - 623 s.

19. Prokopov V. S. Preimuschestva ispol'zovaniya metoda topologicheskoy optimizacii na etape proektirovaniya promyshlennogo produkta [Tekst] / V.S. Prokopov, D.S. Vdovin, S.S. Hrykov // Sistemy proektirovaniya, tehnologicheskoy podgotovki proizvodstva i upravleniya etapami zhiznennogo cikla promyshlennogo produkta (CAD/CAM/PDM-2017). - 2017. - S. 26-29.

20. Romanova V.A. Vizualizaciya pravil'nyh mnogogrannikov v processe ih obrazovaniya [Tekst] / V.A. Romanova // Geometriya i grafika. - 2019. - T. 7. - № 1. - S. 55-67. - DOI:https://doi.org/10.12737/article_5c91ffd0916d52.90296375.

21. Suncov O. S. Issledovanie otrazheniya ot krivolineynyh zerkal na ploskosti v programme Wolfram Mathematica [Tekst] / O.S. Suncov, L.A. Zhiharev // Geometriya i grafika. - 2021. - № 2. - S. 29-45. - DOI:https://doi.org/10.12737/2308-4898-2021-9-2-29-45.

22. Shabolin M. L. Primenenie raschetov metodom konechnyh elementov i topologicheskoy optimizacii pri proektirovanii avtomobilya klassa «Formula student» [Tekst] / M.L. Shabolin // Sbornik trudov 4-go Vserossiyskogo foruma «Studencheskie inzhenernye proekty». M.: MADI. - 2016. - S. 64-71.

23. Schepin E. V. Minimal'naya krivaya Peano [Tekst] / E.V. Schepin, K.E. Bauman // Geometriya, topologiya i matematicheskaya fizika. Sbornik statey. K 70-letiyu so dnya rozhdeniya akademika Sergeya Petrovicha Novikova. Trudy MIAN, 263. - M.: MAIK «Nauka/Interperiodika», 2008. - S. 251-271.

24. Aage N., Erik A., Boyan S. L., Ole S. Giga-voxel computational morphogenesis for structural design // Nature. - 2017. - V. 550. - I. 7674. - pp. 84-86.

25. Berger J. B., Wadley H. N. G., McMeeking R. M. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness // Nature. - 2017. - V. 543. - I. 7646. - pp. 533-537.

26. Bryukhova K.S., Maksimov P.V. The algorithm of topology optimization based on the esomethod // International Research Journal. - 2016. - I. 9 (51) - pp. 16-18.

27. Diaz A., Sigmund O. Checkerboard patterns in layout optimization // Structural optimization. - 1995. - V. 10. - I. 1. - pp. 40-45.

28. Florio, C.S. Selection of the scaling factor in finite element-based gradientless shape optimization for a consistent step size. Struct Multidisc Optim, - 2019, - V. 59, - pp. 713-730. DOI: https://doihttps://doi.org/10.1007/s00158-018-2092-2.

29. Fraldi M., Esposito L., Perrella G., Cutolo A., Cowin S.C. Topological optimization in hip prosthesis design // Biomechanics and modeling in mechanobiology. - 2010. - V. 9. - I. 4. - pp. 389-402.

30. Hu, S., Chen L., Zhang Y., Yang J., Wang S.T. A crossing sensitivity filter for structural topology optimization with chamfering, rounding, and checkerboard-free patterns. Struct Multidisc Optim, - 2009. - V. 37. - pp. 529-540. DOI:https://doi.org/10.1007/s00158-008-0246-3.

31. Iasef Md Rian. FracShell: From Fractal Surface to a Lattice Shell Structure // Lecture Notes in Civil Engineering. - 2019. - pp. 1459-1479. DOI:https://doi.org/10.1007/978-3-030-03676-8_59

32. Jin, R., Du, X., Chen, W. The Use of Meta-modeling Techniques for Optimization Under Uncertainty /Struct. Multidiscip. Optim., Structural and Multidisciplinary Optimization, - 2003, - V 25(2). - pp. 99-116.

33. Kostenko A., Zuzov V. Application of optimization methods to reduce the mass of body parts of minibuses made of layered composite materials // IOP Conference Series: Materials Science and Engineering. - IOP Publishing, - 2020. - V. 963. - №. 1. - pp. 12-18.

34. Lange laar M. Topology optimization of 3-D self-supporting structures for additive manufacturing //Additive Manufacturing. - 2016. - V. 12. - pp. 60-70.

35. Li J. A meshless method for topology optimization of structures under multiple load cases. Elsevier. - 2020. - V.25. - pp. 173-179. DOI:https://doi.org/10.1016/j.istruc.2020.03.005.

36. Liu C., Zhu Y., Sun Z., Li D., Du Z., Zhang W., Guo X. An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization // Structural and Multidisciplinary Optimization. - 2018. - V. 58. - I. 6. - pp. 2455-2479.

37. Liu Z., Korvink J., Huang R. Structure topology optimization: fully coupled level set method via FEMLAB // Structural and Multidisciplinary Optimization. - 2005. - June. - V. 29. - I. 6. - pp. 407-417.

38. Lohr C., Muth M., Dreher R., Zinn C., Elsner P., Weidenmann K. Polymer-Steel-Sandwich-Structures: Influence of Process Parameters on the Composite Strength //Key Engineering Materials. - Trans Tech Publications Ltd. - 2019. - V. 809. - pp. 266-273.

39. Micheletti S., Perotto S., Soli L. Topology optimization driven by anisotropic mesh adaptation: To-wards a free-form design. Computers & Structures. - 2019. - V. 214. - pp. 60-72.

40. Mommaerts M. Y. Evolutionary steps in the design and biofunctionalization of the additively manufactured sub-periosteal jaw implant ‘AMSJI’for the maxilla //International journal of oral and maxillofacial surgery. - 2019. - V. 48. - I. 1. - pp. 108-114.

41. Pimanov V., Oseledets I. Robust topology optimization using a posteriori error estimator for the finite element method. Struct Multidisc Optim, - 2018, - V. 58. - pp. 1619-1632 DOI:https://doi.org/10.1007/s00158-018-1985-4.

42. Raba N. O. Realization of Algorithms of Quaternion Julia and Mandelbrot Sets Visualization// Differential equations and control processes. - 2007. - V. 3. - pp. 25-59.

43. Rayneau-Kirkhope D., Mao Y., Farr R., Segal J. Hierarchical space frames for high mechanical efficiency: Fabrication and mechanical testing // Mechanics Re-search Communications. - 2012. - V. 46. - pp. 41-46.

44. Rayneau-Kirkhope D., Mao Y., Farr R. Ultralight fractal structures from hollow tubes // Physical review letters. - 2012. - V. 109. - I. 20. - pp. 204-301.

45. Rian I. M. FracShell: From Fractal Surface to a Lattice Shell Structure //Digital Wood Design. - Springer, Cham. - 2019. - pp. 1459-1479.

46. Riordon J. Shock-dissipating fractal cubes could forgehigh-techarmor, DOE // Los Alamos National Laboratory. - 2020. - 8 P.

47. Saitou K., Izui K., Nishiwaki S., Papalambros P. A survey of structural optimization in mechanical product development // Journal of Computing and Information Science in Engineering. - 2005, - V.5. - 13 P. DOIhttps://doi.org/10.1115/1.2013290

48. Schaedler T.A, Jacobsen A.J., Torrents A., Sorensen A.E., Lian J., Greer J.R., Valdevit L., Carter W. B. Ultralight metallic microlattices // Science. - 2011. - V. 334. - I. 6058. - pp. 962-965.

49. Sigmund O., Petersson J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization, - 1998, - V. 16. - pp. 68-75. DOI:https://doi.org/10.1007/BF01214002.

50. Xia L., Xia Q., Huang X., Xie Y. Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review //Archives of Computational Methods in Engineering. - 2018. - V. 25. - I. 2. - pp. 437-478.

51. Zhang X., Huo W., Liu J., Zhang Y., Zhang S., Yang J. 3D printing boehmite gel foams into lightweight porous ceramics with hierarchical pore structure //Journal of the European Ceramic Society. - 2020. - V. 40. - I. 3. - pp. 930-934.

52. Zhikharev L. A. A Sierpiński triangle geometric algorithm for generating stronger structures //Journal of Physics: Conference Series. - IOP Publishing, - 2021. - V. 1901. - I. 1. - pp. 12-66.

53. Zhu G., Liao J., Sun G., Li Q. Comparative study on metal/CFRP hybrid structures under static and dynamic loading //International Journal of Impact Engineering. - 2020. - V. 141. - pp. 103-109.

Login or Create
* Forgot password?