Novosibirsk, Russian Federation
Novosibirsk, Russian Federation
Novosibirsk, Russian Federation
employee from 01.01.2016 to 01.01.2024
Novosibirsk, Novosibirsk, Russian Federation
Novosibirsk, Novosibirsk, Russian Federation
In this paper, we examine a torsional Alfvén wave produced by periodic plasma bunches in a magnetized plasma flux tube. A new effect has been revealed: the wave is generated not only during the action of bunches, but also for a long time after the termination, which makes it possible to increase the wavelength by several times. We have determined the conditions under which the wave contains η~40 % of the total bunch energy. The wave radius depends on the energy of one bunch; and the length, on their number. The optimum number of bunches is 15. Simultaneously with the Alfvén wave, a bunch plasma jet (η~35 %) and a slow magnetosonic wave (η~10 %) propagate in the force tube. Similarity parameters scale the results to laboratory and near-Earth magnetized plasma.
plasma bunches, magnetic field, Alfvén wave, numerical simulation
1. Adushkin V.V., Zetser Yu.I., Kiselev Yu.N., Nemchinov I.V., Khristoforov B.D. Active geophysical rocket experiments with the injection of a high-speed plasma jet in the ionosphere. Doklady Akademii nauk [Proc. of the Academy of Sciences]. 1993, vol. 331, no. 4, pp. 486-489. (In Russian).
2. Aidakina N.Y., Gushchin M.E., Zudin I.Y., Korobkov S.V., Kostrov A.V., Strikovskii A.V. Cross-modulation of whistler waves in a magnetized plasma. JETP Lett. 2015, vol. 101, no. 4, pp. 236-239. DOI:https://doi.org/10.1134/S0021364015040025.
3. Berezutsky A.G., Tishchenko V.N., Zakharov Y.P., Miroshnichenko I.Y.B., Shaikhislamov I.D.F. Generation of torsional Alfvén and slow magnetosonic waves by periodic bunches of laser plasma in a magnetised background. Quantum Electronics. 2019, vol. 49, no. 2, p. 178. DOI:https://doi.org/10.1070/QEL16873.
4. Gigliotti A., Gekelman W., Pribyl P., Vincena S., Karavaev A., Shao X., Sharma A., Papadopoulos D. Generation of polarized shear Alfvén waves by a rotating magnetic field source. Physics of Plasmas. 2009, vol. 16, no. 9, pp. 092106. DOI:https://doi.org/10.1063/1.3224030.
5. Gorbachev L.P. Magnetoacoustic and Alfvén waves excited by plasma cloud expansion in cold magnetized plasma. Radiophysics and Quantum Electronics. 1993, vol. 36, iss. 9, pp. 606-612. DOI:https://doi.org/10.1007/BF01038204.
6. Hull A.J., Muschietti L., Oka M., Larson D.E., Mozer F.S., Chaston C.C., Bonnell J.W., Hospodarsky G.B. Multiscale whistler waves within Earth’s perpendicular bow shock. J. Geophys. Res.: Space Phys. 2012, vol. 117, no. A12. DOI:https://doi.org/10.1029/2012JA017870.
7. Markov G.A., Chugunov Yu.V. Resonant plasma-wave discharge in the Earth’s ionosphere. Izvestiya vuzov. Priladnaya nelineinaya dinamika [Izvestiya VUZ. Applied Nonlinear Dynamics]. 2001, vol. 9, no. 2, pp. 60-75. (In Russian).
8. Niemann C., Gekelman W., Constantin C.G., Gekelman W., Constantin C.G., Everson E.T., Schaeffer D.B., Clark S.E., Winske D., Zylstra A.B., Pribyl P., Tripathi S.K.P., Larson D., Glenzer S.H., Bondarenko A.S. Dynamics of exploding plasmas in a large magnetized plasma. Physics of Plasmas. 2013, vol. 20, no. 1, p. 012108. DOI:https://doi.org/10.1063/1.4773911.
9. Tishchenko V.N., Shaikhislamov I.F. Wave merging mechanism: formation of low-frequency Alfven and magnetosonic waves in cosmic plasmas. Quantum Electronics. 2014, vol. 44, no. 2, p. 98. DOI:https://doi.org/10.1070/QE2014v044n02ABEH015326.
10. Tishchenko V.N., Apollonov V.V., Grachev G.N., Gulidov A.I., Zapryagaev V.I., Men’shikov Ya.G., Smirnov A.L., Sobolev A.V. Interaction of an optical pulsed discharge with a gas: conditions for stable generation and merging of shock waves. Quantum Electronics. 2004, vol. 34, no. 10, p. 941. DOI:https://doi.org/10.1070/QE2004v034n10ABEH002736.
11. Tishchenko V.N., Zakharov Yu.P., Shaikhislamov I.F., Berezutsky A.G., Boyarintsev E.L., Melekhov A.V., Ponomarenko A.G., Prokopov P.A. Torsional Alfvén and slow magnetoacoustic waves generated by a plasma in a magnetic field. JETP Lett. 2016, vol. 104, no. 5, pp. 293-296. DOI:https://doi.org/10.1134/S0021364016170136.
12. Vshivkov V.A., Dudnikova G.I., Zakharov Yu.P. Features of the structure of plasma perturbations generated by collisionless interaction of flows with moderate numbers MA=1÷1.25. Fizika kosmicheskoi i laboratornoi plazmy [Physics of Space and Laboratory Plasma]. 1989, pp. 135-145. (In Russian).