Moskva, Moscow, Russian Federation
Moskva, Moscow, Russian Federation
The article deals with the geometric locations of points equidistant from two spheres. In all variants of the mutual position of the spheres, the geometric places of the points are two surfaces. When the centers of the spheres coincide with the locus of points equidistant from the spheres, there will be spheres equal to the half-sum and half-difference of the diameters of the original spheres. In three variants of the relative position of the initial spheres, one of the two surfaces of the geometric places of the points is a two-sheet hyperboloid of revolution. It is obtained when: 1) the spheres intersect, 2) the spheres touch, 3) the outer surfaces of the spheres are removed from each other. In the case of equal spheres, a two-sheeted hyperboloid of revolution degenerates into a two-sheeted plane, more precisely, it is a second-order degenerate surface with a second infinitely distant branch. The spheres intersect - the second locus of the points will be the ellipsoid of revolution. Spheres touch - the second locus of points - an ellipsoid of revolution, degenerated into a straight line, more precisely into a zero-quadric of the second order - a cylindrical surface with zero radius. The outer surfaces of the spheres are distant from each other - the second locus of points will be a two-sheet hyperboloid of revolution. The small sphere is located inside the large one - two coaxial confocal ellipsoids of revolution. In all variants of the mutual position of spheres of the same diameters, the common geometrical place of equidistant points is a plane (degenerate surface of the second order) passing through the middle of the segment perpendicular to it, connecting the centers of the original spheres. The second locus of points equidistant from two spheres of the same diameter can be either an ellipsoid of revolution (if the original spheres intersect), or a straight (cylindrical surface with zero radius) connecting the centers of the original spheres when the original spheres touch each other, or a two-sheet hyperboloid of revolution (if continue to increase the distance between the centers of the original spheres).
geometry, descriptive geometry, geometrical places of points, GMT, analytical geometry, line, sphere, ellipsoid of revolution, two-sheet hyperboloid of revolution
1. Aleksandrov I.I. Sbornik geometricheskih zadach na postroenie s resheniyami [Tekst] / I.I. Aleksandrov - M.: URSS 2004. - 176 s.
2. Antonova I.V. Matematicheskoe opisanie chastnogo sluchaya kvazivrascheniya fokusa ellipsa vokrug ellipticheskoy osi [Tekst] / I.V. Antonova, E.V. Solomonova, N.S. Kadykova // Geometriya i grafika. - 2021. - T. 9. - №. 1. - S. 39-45. - DOI:https://doi.org/10.12737/2308-4898-2021-9-1-39-45.
3. Volkov V.Ya. Kurs nachertatel'noy geometrii na osnove geometricheskogo modelirovaniya. Uchebnik [Tekst] / V.Ya. Volkov - Omsk: SibADI, 2010. - 252s.
4. Volkov V.Ya. Sbornik zadach i uprazhneniy po nachertatel'noy geometrii (k uchebniku «Kurs nachertatel'noy geometrii na osnove geometricheskogo modelirovaniya») [Tekst] / V.Ya. Volkov, V.Yu. Yurkov, K.L. Panchuk, N.V. Kaygorodceva. - Omsk: SIBADI, 2010. - 74 s.
5. Vygodskiy M.Ya. Analiticheskaya geometriya [Tekst] / M.Ya. Vygodskiy. - M.: Fizmatgiz, 1963. - 523 s.
6. Vygodskiy M.Ya. Spravochnik po vysshey matematike [Tekst] // M.Ya. Vygodskiy. - M.: AST: Astrel', 2008. -509 s.
7. Vyshnepol'skiy V.I. Vserossiyskiy studencheskiy konkurs «Innovacionnye razrabotki» [Tekst] / V.I. Vyshnepol'skiy, N.S. Kadykova, N.I. Prokopov // Geometriya i grafika. - 2016. - T. 4. - № 4. - S. 69-86. - DOI:https://doi.org/10.12737/22842.
8. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur. Chast' 1 [Tekst] / V.I. Vyshnepol'skiy, N.A. Sal'kov, E.V. Zavarihina // Geometriya i grafika. - 2017. - T. 5. - № 3. - S. 21-35. - DOI:https://doi.org/10.12737/22842.
9. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur. Chast' 2 [Tekst] / V.I. Vyshnepol'skiy, O.L. Dallakyan, E.V. Zavarihina // Geometriya i grafika. - 2017. - T. 5. - № 4. - S. 15-23. - DOI:https://doi.org/10.12737/22842
10. Vyshnepol'skiy V.I. Geometricheskie mesta tochek, ravnootstoyaschih ot dvuh zadannyh geometricheskih figur. Chast' 3 [Tekst] / V.I. Vyshnepol'skiy, K.A. Kirshanov, K.T. Egiazaryan // Geometriya i grafika. - 2018. - T. 6. - № 4. - S. 3-19. - DOI:https://doi.org/10.12737/article_5c21f207bfd6e4.78537377
11. Vyshnepol'skiy V.I. Metodicheskie osnovy podgotovki i provedeniya olimpiad po graficheskim disciplinam v vysshey shkole [Tekst] / dissertaciya na soiskanie uchenoy stepeni kandidata pedagogicheskih nauk / V.I. Vyshnepol'skiy. - M., 2000. - 250 s.
12. Girsh A.G. Kak reshat' zadachu. Metodicheskie ukazaniya po resheniyu zadach povyshennoy slozhnosti [Tekst] / A.G. Girsh. - Omsk: SIBADI, 1986. - 36 s.
13. Glogovskiy V.V. Ekvidistanty. Voprosy teorii, prilozheniy i metodiki prepodavaniya nachertatel'noy geometrii [Tekst] / V.V. Glogovskiy // Trudy Rizhskoy nauchno-metodicheskoy konferencii. - Riga: RIIGVF, 1960. - 422 s.
14. Glogovskiy V.V. [Tekst] / V.V. Glogovskiy // Nauchnye zapiski L'vovskogo politehnicheskogo instituta, t. HHH, seriya fiz.-mat., vyp. 1, 1955. - str. 72-90.
15. Glogovskiy V.V. [Tekst] / V.V. Glogovskiy // Nauchnye zapiski L'vovskogo politehnicheskogo instituta, t. HHHVIII, seriya fiz.-mat., vyp. 2, 1956. - str. 72-90.
16. E Vin Tun. Postroenie receptornyh geometricheskih modeley ob'ektov slozhnyh tehnicheskih form [Tekst] / E Vin Tun, L.V. Markin // Geometriya i grafika. - 2019. - T. 7. - № 4. - S. 44-56. - DOI:https://doi.org/10.12737/article_5d2c170ab37810.30821713.
17. Eliseev N.A. Etyudy po nachertatel'noy geometrii professora D.I. Kargina. Sovershenstvovanie podgotovki uchaschihsya i studentov v oblasti grafiki, konstruirovaniya i standartizacii [Tekst] / N.A. Eliseev // Mezhvuzovskiy nauchno-metodicheskiy sbornik. - Saratov: SGTU, 2004. - s. 56-58.
18. Ivanov G.S. Nachertatel'naya geometriya: - 3-e izd. [Tekst] / G.S. Ivanov. - M: FGBOU VPO MGUL, 2012. - 340 s.
19. Ivanov G.S. Princip dvoystvennosti - teoreticheskaya baza vzaimosvyazi sinteticheskih i analiticheskih sposobov resheniya geometricheskih zadach [Tekst] / G.S. Ivanov, I.M. Dmitrieva // Geometriya i grafika. - 2016. - T. 4. - № 3. - S. 3-10. - DOI:https://doi.org/10.12737/21528.
20. Ivanov G.S. Teoreticheskie osnovy nachertatel'noy geometrii [Tekst] / G.S. Ivanov. - M.: Mashinostroenie, 1998. - 458 s.
21. Kaygorodceva N.V. Poverhnosti v nachertatel'noy geometrii i logiko-geometricheskoe myshlenie - Omsk: Izd-vo OmGTU, 2013. - 184 s.
22. Kargin D.I. Etyudy po nachertatel'noy geometrii. Geometricheskie mesta [Tekst] / D.I. Kargin. - PFA RAN, r.802, op. 1, ed. hr. 148, 1939-1940 gg. 405 l.
23. Korotkiy V.A. Graficheskie algoritmy postroeniya kvadriki, zadannyh devyat'yu tochkami [Tekst] / V.A. Korotkiy // Geometriya i grafika. - 2019. - T. 7. - № 2. - S. 3-12. - DOI:https://doi.org/10.12737/article_5d2c1502670779.58031440.
24. Krivoshapko S.N. Enciklopediya analiticheskih poverhnostey [Tekst] / S.N. Krivoshapko, V.N. Ivanov. - M.: LIBROKOM, 2010. - 560 s. - 2015 (2-e izd).
25. Krivoshapko S.N. Analiticheskie poverhnosti v arhitekture zdaniy, konstrukciy i izdeliy: Monografiya [Tekst] / S.N. Krivoshapko, I.A. Mamieva. - M.: Knizhnyy dom «LIBROKOM», 2012. - 328 s.
26. Naumovich N.V. Geometricheskie mesta v prostranstve i zadachi na postroenie [Tekst] / Naumovich N.V. - M.: Gos. uchebno-pedagogicheskoe izd-vo, 1962. - 152 s.
27. Obuhova V.S. Poetapnoe modelirovanie tehnicheskih poverhnostey [Tekst] / V.S. Obuhova. // Referativnaya informaciya o zakonchennyh nauchno-issledovatel'skih rabotah v vuzah Ukrainskoy SSR: Prikladnaya geometriya i inzhenernaya grafika. - Vyp. 1. - Kiev: Vischa shkola, 1977. - S. 5-6.
28. Pavlov V.E. Dmitriy Ivanovich Kargin, 1880 - 1949 / V.E. Pavlov, B.F. Tarasov, SPb.: Nauka, 1998. - 272 s.
29. Panchuk K.L. Ciklograficheskaya interpretaciya i komp'yuternoe reshenie odnoy sistemy algebraicheskih uravneniy [Tekst] / K.L. Panchuk, E.V. Lyubchinov // Geometriya i grafika. - 2019. - T. 7. - №. 3. - S. 3-14. - DOI:https://doi.org/10.12377/article_5dce5e528e4301.77886978.
30. Posvyanskiy A.D. Pyat'desyat zadach povyshennoy trudnosti [Tekst] / A.D. Posvyanskiy. - Kalinin: KPI, 1970. - 41 s.
31. Sal'kov N.A. Nachertatel'naya geometriya: bazovyy kurs: Ucheb. posobie [Tekst] / N.A. Sal'kov. - M.: INFRA-M, 2013. - 184 s.
32. Sal'kov N.A. Nachertatel'naya geometriya - baza dlya komp'yuternoy grafiki [Tekst] / N.A. Sal'kov // Geometriya i grafika. - 2016. - T. 4. - №. 2. - S. 37-47. - DOI:https://doi.org/10.12737/19832.
33. Sal'kov N.A. Nachertatel'naya geometriya - teoriya izobrazheniy [Tekst] / N.A. Sal'kov // Geometriya i grafika. - 2016. - T. 4. - №. 4. - S. 41-47. - DOI:https://doi.org/10.12737/22842.
34. Sal'kov N.A. Obschie principy zadaniya lineychatyh poverhnostey. Chast' 2 [Tekst] / N.A. Sal'kov // Geometriya i grafika. - 2019. - T. 7. - № 1. - S. 14-27. - DOI:https://doi.org/10.12737/article_5s9201eb1c5f06.47425839.
35. Sal'kov N.A. Obschie principy zadaniya lineychatyh poverhnostey. Chast' 3 [Tekst] / N.A. Sal'kov // Geometriya i grafika. - 2019. - T. 7. - № 2. - S. 13-27. - DOI:https://doi.org/10.12737/article_5d2c170ab37810.30821713.
36. Seregin V.I. Mezhdisciplinarnye svyazi nachertatel'noy geometrii i smezhnyh razdelov vysshey matematiki [Tekst] / V.I. Seregin, G.S. Ivanov, I.M. Dmitrieva, K.A. Murav'ev // Geometriya i grafika. - 2013. - T.1. - № 3-4. - S. 8-12. - DOI:https://doi.org/10.12737/2124.
37. Seregin V.I. Nauchno-metodicheskie voprosy podgotovki studentov k olimpiadam po nachertatel'noy geometrii [Tekst] / V.I. Seregin, G.S. Ivanov, I.F. Borovikov // Geometriya i grafika. - 2017. - T.5. - № 1. - S. 73-81. - DOI:https://doi.org/10.12737/25126.