MHD-WAVES IN THE GEOMAGNETIC TAIL: A REVIEW
Rubrics: REVIEWS
Abstract and keywords
Abstract (English):
This article presents the review of experimental and theoretical studies on ultra-low-frequency MHD oscillations of the geomagnetic tail. We consider the Kelvin–Helmholtz instability at the magnetopause, oscillations with a discrete spectrum in the “magic frequencies” range, the ballooning instability of coupled Alfvén and slow magnetosonic waves, and “flapping” oscillations of the current sheet of the geomagnetic tail. Over the last decade, observations from THEMIS, CLUSTER and Double Star satellites have been of great importance for experimental studies. The use of several spacecraft allows us to study the structure of MHD oscillations with high spatial resolution. Due to this, we can make a detailed comparison between theoretical results and those obtained from multi-spacecraft studies. To make such comparisons in theoretical studies, in turn, we have to use the numerical models closest to the real magnetosphere.

Keywords:
ULF oscillations, geomagnetic tail, MHD instability, eigenmodes
Text
Publication text (PDF): Read Download

ВВЕДЕНИЕ

В последние годы с появлением многоспутниковых систем появилась возможность подробного исследования МГД-колебаний, генерируемых и распространяющихся в магнитосфере Земли [Foullon et al., 2008; Agapitov, Cheremnykh, 2013]. Это, в свою очередь, требует более глубокого теоретического изучения таких колебаний. В неоднородной магнитосферной плазме различные ветви МГД-колебаний взаимодействуют между собой, порождая сложную картину волновых полей.

УНЧ-колебания в геомагнитном хвосте имеют свои особенности. Наличие здесь токового и плазменного слоев накладывает свой отпечаток на структуру и спектры альфвеновских волн [Pilipenko, 1990; Rankin et al., 2000; Keiling, 2009]. Во время геомагнитных суббурь происходит разрыв токового слоя, что порождает импульс быстрых магнитозвуковых (БМЗ) волн, который на резонансных магнитных оболочках трансформируется в альфвеновские волны [Allan, Wright, 1998]. Генерируемая в таком процессе альфвеновская волна выглядит как импульс продольных токов и по своим проявлениям не отличается от процесса магнитного пересоединения [Lee, Lysak, 1999; Lysak et al., 2009].

Медленные магнитозвуковые (ММЗ) волны, как и альфвеновские, распространяются почти вдоль силовых линий геомагнитного поля. На тех магнит-ных оболочках, которые пересекают токовый слой геомагнитного хвоста, эти волны могут взаимодействовать между собой [Ohtani et al., 1989]. При наличии кривизны магнитных силовых линий и направленного наружу градиента давления фоновой плазмы такие сцепленные колебания могут становиться неустойчивыми [Liu, 1997; Cheremnykh, Parnowski, 2006; Mazur et al., 2013]. Предполагают, что такая неустойчивость (баллонная) может приводить к пересоединению магнитных силовых линий на начальной стадии геомагнитных суббурь [Cheng, 2004; Saito et al., 2008].

Геомагнитный хвост может служить волноводом для быстрых магнитозвуковых волн [Mann et al., 1999, Мазур и др., 2010]. Собственные моды в таком волноводе могут возбуждаться неустойчивостью сдвигового течения плазмы на магнитопаузе [McKenzie, 1970]. Условия развития неустойчивости Кельвина-Гельмгольца за счет сдвига скорости плазмы в области плазменной мантии достигаются редко. Однако здесь могут возникать неустойчивые колебания, связанные с резонансной неустойчивостью потока плазмы (resonant flow instability, RFI) [Hasegawa et al., 2006]. Эти колебания развиваются в пограничном плазменном слое при достаточно сильных вариациях в нем альфвеновской скорости и скорости звука [Erdelyi, Taroyan, 2003].

БМЗ-волны, проникающие из солнечного ветра в магнитосферу, возбуждают в пограничном слое магнитопаузы резонансные альфвеновские и ММЗ-волны. Из-за высокой диссипативности ММЗ-волн происходит эффективная передача энергии и импульса ионам фоновой плазмы на резонансных оболочках. В результате этого в областях магнитосферы, прилегающих к магнитопаузе, могут сформироваться ячейки с обратной конвекцией плазмы [Leonovich, Kozlov, 2013a]. Отметим также недавно обнаруженные изгибные колебания токового слоя геомагнитного хвоста [Zhang et al., 2002]. Они не похожи на известные типы МГД-колебаний и требуют специального изучения.

References

1. Agapitov O., Glassmeier K.-H., Plaschke F., et al. Surface waves and field line resonances: A THEMIS case study. Journal of Geophysical Researoh. 2009, vol. 114, p. A00C27. DOI:https://doi.org/10.1029/2008JA013553.

2. Agapitov O.V., Cheremnykh O.K. Magnetospheric ULF waves driven by external sources. Advances in Astronomy and Space Physics. 2013, vol. 3, pp. 12-19.

3. Akhiezer A.I., Akhiezer I.A., Polovin R.V., et al. Plasma electrodynamics. Vol. 1 - Linear theory. Vol. 2 - Non-linear theory and fluctuations. Oxford Pergamon Press International Series on Natural Philosophy. 1975.

4. Allan W., Wright A.N. Hydromagnetic wave propagation and coupling in a magnetotail waveguide. Journal of Geophysical Research. 1998, vol. 103, pp. 2359-2368. DOI:https://doi.org/10.1029/97JA02874.

5. Archer M.O., Hartinger M.D., Horbury T.S. Magnetospheric ”magic” frequencies as magnetopause surface eigenmodes. Geophysical Research Letters. 2013, vol. 40, pp. 5003-5008. DOI:https://doi.org/10.1002/grl.50979.

6. Cao J.B., Wei X.H., Duan A.Y., et al. Slow magnetosonic waves detected in reconnection diffusion region in the Earth´s magnetotail. Journal of Geophysical Research. 2013, vol. 118, pp. 1659-1666. DOI:https://doi.org/10.1002/jgra.50246.

7. Chen L., Hasegawa A. A theory of long-period magnetic pulsations: 1. Steady state excitation of field line resonance. Journal of Geophysical Research. 1974b, vol. 79, pp. 1024-1032. DOI:https://doi.org/10.1029/JA079i007p01024.

8. Cheng C.Z. Physics of Substorm Growth Phase, Onset, and Dipolarization. Space Science Review. 2004, vol. 113, pp. 207-270. DOI:https://doi.org/10.1023/B:SPAC.0000042943.59976.0e.

9. Cheng C.Z., Lui A.T.Y. Kinetic ballooning instability for substorm onset and current disruption observed by AMPTE/CCE. Geophysical Research Letters. 1998, vol. 25, pp. 4091-4094. DOI:https://doi.org/10.1029/1998GL900093.

10. Cheremnykh O.K., Parnowski A.S. Influence of ionospheric conductivity on the ballooning modes in the inner magnetosphere of the Earth. Advances in Space Research. 2006, vol. 37, pp. 599-603. DOI:https://doi.org/10.1016/j.asr.2005.01.073.

11. Dmitrienko I.S. Evolution of FMS and Alfven waves produced by the initial disturbance in the FMS waveguide. Journal of Plasma Physics. 2013, vol. 79, pp. 7-17. DOI: 10.10 17/S0022377812000608.

12. Du J., Zhang T.L., Nakamura R., et al. Mode conversion between Alfvén and slow waves observed in the magnetotail by THEMIS. Geophysical Research Letters. 2011, vol. 38, p. 7101. DOI:https://doi.org/10.1029/2011GL046989.

13. Erdélyi R., Taroyan Y. On resonantly excited MHD waves in the magnetotail. Journal of Geophysical Research. 2003, vol. 108, p. 1043. DOI:https://doi.org/10.1029/2002JA009586.

14. Erkaev N.V., Semenov V.S., Kubyshkin I.V., et al. MHD model of the flapping motions in the magnetotail current sheet. Journal of Geophysical Research. 2009, vol. 114, p. 3206. DOI:https://doi.org/10.1029/2008JA013728.

15. Förster M., Haaland S.E., Paschmann G., et al. High-latitude plasma convection during Northward IMF as derived from in-situ magnetospheric Cluster EDI measurements. Annales Geophysicae. 2008, vol. 26, pp. 2685-2700. DOI:https://doi.org/10.5194/angeo-26-2685-2008.

16. Foullon C., Farrugia C.J., Fazakerley A.N., et al. Evolution of Kelvin-Helmholtz activity on the dusk flank magnetopause. Journal of Geophysical Research. 2008, vol. 113, p. 11203. DOI:https://doi.org/10.1029/2008JA013175.

17. Fruit G., Louarn P., Tur A., et al. On the propagation of magnetohydrodynamic perturbations in a Harris-type current sheet 1. Propagation on discrete modes and signal reconstruction. Journal of Geophysical Research. 2002, vol. 107, p. 1411. DOI:https://doi.org/10.1029/2001JA009212.

18. Golovchanskaya I.V., Maltsev Y.P. On the identification of plasma sheet flapping waves observed by Cluster. Geophysical Research Letters. 2005, vol. 32, p. 2102. DOI: 10.1029/ 2004GL021552.

19. Hameiri E., Laurence P., Mond M. The ballooning instability in space plasmas. Journal of Geophysical Research. 1991, vol. 96, pp. 1513-1526. DOI:https://doi.org/10.1029/90JA02100.

20. Hartinger M., Angelopoulos V., Moldwin M.B., et al. Global energy transfer during a magnetospheric field line resonance. Geophysical Research Letters. 2011, vol. 38, p. 12101. DOI:https://doi.org/10.1029/2011GL047846.

21. Hasegawa H., Fujimoto M., Takagi K., et al. Single-spacecraft detection of rolled-up Kelvin-Helmholtz vortices at the flank magnetopause. Journal of Geophysical Research. 2006, vol. 111, p. 9203. DOI:https://doi.org/10.1029/2006JA011728.

22. Keiling A. Alfvén Waves and Their Roles in the Dynamics of the Earth´s Magnetotail: A Review. Space Science Review. 2009, vol. 142, pp. 73-156. DOI:https://doi.org/10.1007/s11214-008-9463-8.

23. Keiling A. Pi2 pulsations driven by ballooning instability. Journal of Geophysical Research. 2012, vol. 117, p. 3228. DOI:https://doi.org/10.1029/2011JA017223.

24. Kepko L., Spence H.E., Singer H.J. ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophysical Research Letters. 2002, vol. 29, p. 1197. DOI: 10.1029/ 2001GL014405.

25. Klimushkin D.Y., Mager P.N., Pilipenko V.A. On the ballooning instability of the coupled Alfvén and drift compressional modes. Earth, Planets and Space. 2012, vol. 64, pp. 777-781. DOI:https://doi.org/10.5047/eps.2012.04.002.

26. Kozlov D.A., Leonovich A.S., Cao J.B. The structure of standing Alfvén waves in a dipole magnetosphere with moving plasma. Annales Geophysicae. 2006, vol. 24, pp. 263-274. DOI:https://doi.org/10.5194/angeo-24-263-2006.

27. Kozlov D.A., Mazur N.G., Pilipenko V.A., Fedorov E.N. Dispersion equation for ballooning modes in two-component plasma. Journal of Plasma Physics. 2014, vol. 80, pp. 379-393. DOI:https://doi.org/10.1017/S0022377813001347.

28. Lee D.-H., Lysak R.L. MHD waves in a three-dimensional dipolar magnetic field: A search for Pi2 pulsations. Journal of Geophysical Research. 1999, vol. 104, pp. 28691-28700. DOI:https://doi.org/10.1029/1999JA900377.

29. Leonovich A.S. A theory of field line resonance in a dipole-like axisymmetric magnetosphere. Journal of Geophysical Research. 2001, vol. 106, pp. 25803-25812. DOI: 10.1029/ 2001JA000104.

30. Leonovich A.S. A theory of MHD instability of an inhomogeneous plasma jet. Journal of Plasma Physics. 2011a, vol. 77, pp. 315-337. DOI:https://doi.org/10.1017/S0022377810000346.

31. Leonovich A.S. MHD-instability of the magnetotail: Global modes. Planetary and Space Science. 2011b, vol. 59, pp. 402-411. DOI:https://doi.org/10.1016/j.pss.2011.01.006.

32. Leonovich A.S. Wave mechanism of the magnetospheric convection. Planetary and Space Science. 2012, vol. 65, pp. 67-75. DOI:https://doi.org/10.1016/j.pss.2012.01.009.

33. Leonovich A.S., Kozlov D.A. Alfvenic and magnetosonic resonances in a nonisothermal plasma. Plasma Physics and Controlled Fusion. 2009b, vol. 51, no. 8, p. 085007. DOI: 10.10 88/0741-3335/51/8/085007.

34. Leonovich A.S., Kozlov D.A. Magnetosonic resonances in the magnetospheric plasma. Earth, Planets and Space. 2013a, vol. 65, pp. 369-384. DOI:https://doi.org/10.5047/eps.2012.07.002.

35. Leonovich A.S., Kozlov D.A. On ballooning instability in current sheets. Plasma Physics and Controlled Fusion. 2013b. vol. 55, no. 8, p. 085013. DOI:https://doi.org/10.1088/0741-3335/55/8/085013.

36. Leonovich A.S., Kozlov D.A. Coupled guided modes in the magnetotails: spatial structure and ballooning instability. Astrophysics and Space Science. 2014, vol. 353, pp. 9-23. DOI:https://doi.org/10.1007/s10509-014-1999-3.

37. Leonovich A.S., Mazur V.A. The spatial structure of poloidal Alfven oscillations of an axisymmetric magnetosphere. Planetary and Space Science. 1990, vol. 38, pp. 1231-1241. DOI:https://doi.org/10.1016/0032-0633(90)90128-D.

38. Leonovich A.S., Mazur V.A. A theory of transverse small-scale standing Alfven waves in an axially symmetric magnetosphere. Planetary and Space Science. 1993, vol. 41, pp. 697-717. DOI:https://doi.org/10.1016/0032-0633(93)90055-7.

39. Leonovich A.S., Mazur V.A. Magnetospheric resonator for transverse-small-scale standing Alfven waves. Planetary and Space Science. 1995a, vol. 43, pp. 881-883. DOI:https://doi.org/10.1016/0032-0633(94)00206-7.

40. Leonovich A.S., Mazur V.A. Linear transformation of the standing Alfven wave in an axisymmetric magnetosphere. Planetary and Space Science. 1995b, vol. 43, pp. 885-893. DOI:https://doi.org/10.1016/0032-0633(94)00207-8.

41. Leonovich. A.S., Mazur V.A. Penetration to the Earths surface of standing Alfvén waves excited by external currents in the ionosphere. Annales Geophysicae. 1996, vol. 14, pp. 545-556. DOI:https://doi.org/10.1007/s00585-996-0545-1.

42. Leonovich A.S., Mazur V.A. Structure of magnetosonic eigenoscillations of an axisymmetric magnetosphere. Journal of Geophysical Research. 2000, vol. 105, pp. 27707-27716. DOI:https://doi.org/10.1029/2000JA900108.

43. Leonovich A.S., Mazur V.A. Why do ultra-low-frequency MHD oscillations with a discrete spectrum exist in the magnetosphere. Annales Geophysicae. 2005, vol. 23, pp. 1075-1079. DOI:https://doi.org/10.5194/angeo-23-1075-2005.

44. Leonovich A.S., Mazur V.A. Eigen Ultra-Low-Frequency Magnetosonic Oscillations of the Near Plasma Sheet. Cosmic Research. 2008, vol. 46, pp. 327-334. DOI:https://doi.org/10.1134/S001095 2508040072.

45. Leonovich A.S., Mishin V.V. Stability of magne-tohydrodynamic shear flows with and without bounding walls. Journal of Plasma Physics. 2005, vol. 71, pp. 645-664. DOI:https://doi.org/10.1017/S002237780400337X.

46. Liu W.W. Physics of the explosive growth phase: Ballooning instability revisited. Journal of Geophysical Research. 1997, vol. 102, pp. 4927-4931. DOI:https://doi.org/10.1029/96JA03561.

47. Lysak R.L., Song Y., Jones T.W. Propagation of Alfvén waves in the magnetotail during substorms. Annales Geophysicae. 2009, vol. 27, pp. 2237-2246. DOI:https://doi.org/10.5194/angeo-27-2237-2009.

48. Mager P.N., Klimushkin D.Y., Pilipenko V.A., et al. Field-aligned structure of poloidal Alfvén waves in a finite pressure plasma. Annales Geophysicae. 2009, vol. 27, pp. 3875-3882. DOI:https://doi.org/10.5194/angeo-27-3875-2009.

49. Mann I.R., Wright A.N., Mills K.J., et al. Excitation of magnetospheric waveguide modes by magnetosheath flows. Journal of Geophysical Research. 1999, vol. 104, pp. 333-354.

50. Mazur N.G., Fedorov E.N., Pilipenko V.A. MHD-waveguides in cosmic plasma. Fizika plazmy [Plasma Physics Reports]. 2010, vol. 36, pp. 653-670 (in Russian).

51. Mazur N.G., Fedorov E.N., Pilipenko V.A. Dispersion relation for balloonning modes in near-Earth plasma. Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy]. 2012, vol. 52, no. 5, pp. 639-648 (in Russian).

52. Mazur N.G., Fedorov E.N., Pilipenko V.A. Ballooning modes and their stability in a near-Earth plasma. Earth, Planets and Space. 2013, vol. 65, pp. 463-471. DOI:https://doi.org/10.5047/eps. 2012.07.006.

53. Mazur N.G., Fedorov E.N., Pilipenko V.A. Global stability of balloonning modes in a cyllindrical model. Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy]. 2013, vol. 53, pp. 476-485. DOI:https://doi.org/10.7868/S0016794013030139 (in Russian).

54. Mazur N.G., Fedorov E.N., Pilipenko V.A. Longitudinal structure of ballooning MHD disturbances in a model magnetosphere. Kosmicheskie issledovaniya [Cosmic Research]. 2014, vol. 52, pp. 1-11 (in Russian). DOI:https://doi.org/10.7868/S0023 420614030078.

55. Mazur N.G., Fedorov E.N., Pilipenko V.A. Longitudinal structure of ballooning MHD disturbances in a model magnetosphere. Cosmic Research. 2014, vol. 52, pp. 175-184. DOI:https://doi.org/10.1134/S0010952514030071.

56. Mazur V.A. Resonance excitation of the magnetosphere by hydromagnetic waves incident from solar wind. Plasma Physics Report. 2010, vol. 36, pp. 953-963. DOI: 10.1134/ S1063780X10110048.

57. Mazur V.A., Chuiko D.A. Excitation of a magnetospheric MHD cavity by Kelvin-Helmholtz instability. Plasma Physics Report. 2011, vol. 37, pp. 913-934. DOI:https://doi.org/10.1134/S1063780 X11090121.

58. Mazur V.A., Chuiko D.A. Influence of the outer-magneto-spheric magnetohydrodynamic waveguide on the reflection of hydromagnetic waves from a shear flow at the magnetopause. Plasma Physics Report. 2013, vol. 39, pp. 959-975. DOI: 10.11 34/S1063780X13120064.

59. Mazur V.A., Leonovich A.S. ULF hydromagnetic oscillations with the discrete spectrum as eigenmodes of MHD-resonator in the near-Earth part of the plasma sheet. Annales Geophysicae. 2006, vol. 24, pp. 1639-1648. DOI: 10. 5194/angeo-24-1639-2006.

60. McKenzie J.F. Hydromagnetic wave interaction with the magnetopause and the bow shock. Planetary and Space Science. 1970, vol. 18, pp. 1-23. DOI:https://doi.org/10.1016/0032-0633(70)90063-2.

61. Mishin V.V. On the MHD instability of the Earth´s magnetopause and its geophysical effects. Planetary and Space Science. 1981, vol. 29, pp. 359-363. DOI:https://doi.org/10.1016/0032-0633(81)90024-6.

62. Miura A., Pritchett P.L. Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma. Journal of Geophysical Research. 1982, vol. 87, pp. 7431-7444. DOI:https://doi.org/10.1029/JA087iA09p07431.

63. Miura A. Kelvin-Helmholtz instability at the magnetospheric boundary - Dependence on the magnetosheath sonic Mach number. Journal of Geophysical Research. 1992, vol. 97, p. 10655. DOI:https://doi.org/10.1029/92JA00791.

64. Ohtani S., Miura A., Tamao T. Coupling between Alfven and slow magnetosonic waves in an inhomogeneous finite-beta plasma. I. Coupled equations and physical mechanism. II. Eigenmode analysis of localized ballooning-interchange instability. Planetary and Space Science. 1989, vol. 37, pp. 567-577. DOI:https://doi.org/10.1016/0032-0633(89)90097-4.

65. Pilipenko V.A. ULF waves on the ground and in space. Journal of Atmospheric and Terrestrial Physics. 1990, vol. 52, pp. 1193-1209. DOI:https://doi.org/10.1016/0021-9169(90)90087-4.

66. Plaschke F., Glassmeier K.-H., Auster H.U., et al. Standing Alfvén waves at the magnetopause. Geophysical Research Letters. 2009, vol. 36, p. 2104. DOI:https://doi.org/10.1029/2008GL036411.

67. Potapov A.S., Polyushkina T.N., Pulyaev V.A. Observations of ULF waves in the solar corona and in the solar wind at the Earth´s orbit. Journal of Atmospheric and Terrestrial Physics. 2013a, vol. 102, pp. 235-242. DOI:https://doi.org/10.1016/j.jastp.2013.06.001.

68. Radoski H.R. A theory of latitude dependent geomagnetic micropulsations: The asymptotic fields. Journal of Geophysical Research. 1974a, vol. 79, pp. 595-603. DOI:https://doi.org/10.1029/JA079 i004p00595.

69. Rankin R., Fenrich F., Tikhonchuk V.T. Shear Alfvén waves on stretched magnetic field lines near midnight in Earth´s magnetosphere. Geophysical Research Letters. 2000, vol. 27, pp. 3265-3268. DOI:https://doi.org/10.1029/2000GL000029.

70. Rankin R., Kabin K., Marchand R. Alfvénic field line resonances in arbitrary magnetic field topology. Advances in Space Research. 2006, vol. 38, pp. 1720-1729. DOI: 10.1016/ j.asr.2005.09.034.

71. Runov A., Angelopoulos V., Sergeev V.A., et al. Global properties of magnetotail current sheet flapping: THEMIS perspectives. Annales Geophysicae. 2009, vol. 27, pp. 319-328. DOI:https://doi.org/10.5194/angeo-27-319-2009.

72. Ruohoniemi J.M., Greenwald R.A., Baker K.B., et al. HF radar observations of Pc5 field line resonances in the midnight/early morning MLT sector. Journal of Geophysical Research. 1991, vol. 96, p. 15697. DOI:https://doi.org/10.1029/91JA00795.

73. Saito M.H., Miyashita Y., Fujimoto M., et al. Modes and characteristics of low-frequency MHD waves in the near-Earth magnetotail prior to dipolarization: Fitting method. Journal of Geophysical Research. 2008, vol. 113, p. 6201. DOI: 10.1029/ 2007JA012778.

74. Saka O., Hayashi K., Thomsen M. Pre-onset auroral signatures and subsequent development of substorm auroras: A development of ionospheric loop currents at the onset latitudes. Annales Geophysicae. 2014, vol. 32, pp. 1011-1023. DOI:https://doi.org/10.5194/angeo-32-1011-2014.

75. Samson J.C., Harrold B.G., Ruohoniemi J.M., et al. Field line resonances associated with MHD waveguides in the magnetosphere. Geophysical Research Letters. 1992, vol. 19, pp. 441-444. DOI:https://doi.org/10.1029/92GL00116.

76. Samson J.C., Rankin R. The coupling of solar wind energy to MHD cavity modes, waveguide modes, and field line resonances in the Earth´s magnetosphere. Washington DC American Geophysical Union Geophysical Monograph Series. 1994, vol. 81, pp. 253-264. DOI:https://doi.org/10.1029/GM081p0253.

77. Sarris T.E., Liu W., Kabin K., et al. Characterization of ULF pulsations by THEMIS. Geophysical Research Letters. 2009, vol. 36, pp. 4104. DOI:https://doi.org/10.1029/2008GL036732.

78. Sergeev V.A., Pellinen R.J., Pulkkinen T.I. Steady Magnetospheric Convection: A Review of Recent Results. Space Science Review. 1996, vol. 75, pp. 551-604. DOI: 10.1007/ BF00833344.

79. Sergeev V.A., Sormakov D.A., Apatenkov S.V., et al. Survey of large-amplitude flapping motions in the midtail current sheet. Annales Geophysicae. 2006, vol. 24, pp. 2015-2024. DOI:https://doi.org/10.5194/angeo-24-2015-2006.

80. Southwood D.J. Some features of field line resonances in the magnetosphere. Planetary and Space Science. 1974, vol. 22, pp. 483-491. DOI:https://doi.org/10.1016/0032-0633(74)90078-6.

81. Southwood D.J., Saunders M.A. Curvature coupling of slow and Alfven MHD waves in a magnetotail field configuration. Planetary and Space Science. 1985, vol. 33, pp. 127-134. DOI:https://doi.org/10.1016/0032-0633(85)90149-7.

82. Stasiewicz K., Bellan P., Chaston C., et al. Small scale Alfvenic structure in the aurora. Space Science Review. May 2000, vol. 92, Iss. 3-4, pp. 423-533. DOI:https://doi.org/10.1023/A: 1005207202143.

83. Takahashi K., Glassmeier K.-H., Angelopoulos V., et al. Multisatellite observations of a giant pulsation event. Journal of Geophysical Research. 2011, vol. 116, p. 11223. DOI:https://doi.org/10.1029/2011JA016955.

84. Tamao T. Transmission and coupling resonance of hydromagnetic disturbances in the non-uniform Earth´s magnetosphere. Scientific Reports of Tohoku University. 1965, vol. 17, pp. 43-54.

85. Turkakin H., Rankin R., Mann I.R. Primary and secondary compressible Kelvin-Helmholtz surface wave instabilities on the Earth´s magnetopause. Journal of Geophysical Research. 2013, vol. 118, pp. 4161-4175. DOI:https://doi.org/10.1002/jgra.50394.

86. Turkakin H., Mann I.R., Rankin R. Kelvin-Helmholtz unstable magnetotail flow channels: Deceleration and radiation of MHD waves. Geophysical Research Letters. 2014, vol. 41, pp. 3691-3697. DOI:https://doi.org/10.1002/2014GL060450.

87. Viall N.M., Kepko L., Spence H.E. Relative occurrence rates and connection of discrete frequency oscillations in the solar wind density and dayside magnetosphere. Journal of Geophysical Research. 2009, vol. 114, p. 1201. DOI:https://doi.org/10.1029/2008JA013334.

88. Volwerk M., Glassmeier K.-H., Nakamura R., et al. Flow burst-induced Kelvin-Helmholtz waves in the terrestrial magnetotail. Geophysical Research Letters. 2007, vol. 34, p. 10102. DOI:https://doi.org/10.1029/2007GL029459.

89. Walker A.D.M. Theory of magnetospheric standing hydromagnetic waves with large azimuthal wave number. I. Coupled magnetosonic and Alfven waves. Journal of Geophysical Research. 1987, vol. 92, pp. 10039-10045. DOI:https://doi.org/10.1029/JA092iA09p10039.

90. Walker A.D.M. Excitation of field line resonances by sources outside the magnetosphere. Annales Geophysicae. 2005, vol. 23, pp. 3375-3388. DOI:https://doi.org/10.5194/angeo-23-3375-2005.

91. Wright A.N., Allan W. Simulations of Alfvén waves in the geomagnetic tail and their auroral signatures. Journal of Geophysical Research. 2008, vol. 113, p. 2206. DOI: 10.1029/ 2007JA012464.

92. Zelenyi L.M., Artemyev A.V., Petrukovich A.A., et al. Low frequency eigenmodes of thin anisotropic current sheets and Cluster observations. Annales Geophysicae. 2009, vol. 27, pp. 861-868. DOI:https://doi.org/10.5194/angeo-27-861-2009.

93. Zhang T.L., Baumjohann W., Nakamura R., et al. A wavy twisted neutral sheet observed by CLUSTER. Geophysical Research Letters. 2002, vol. 29, p. 1899. DOI: 10.1029/ 2002GL015544.

94. Zhu P., Raeder J. Ballooning instability-induced plasmoid formation in near-Earth plasma sheet. Journal of Geophysical Research. 2014, vol. 119, pp. 131-141. DOI:https://doi.org/10.1002/2013 JA019511.

Login or Create
* Forgot password?