Abstract and keywords
Abstract (English):
. In this paper, we examine the relationship of the SME index with magnetic storm characteristics and interplanetary medium parameters during the main phase of magnetic storms caused by CIR and ICME events. Over the period 1990–2017, 107 magnetic storms driven by (64) CIR and (43) ICME events have been selected. In contrast to AE and Kp, a stronger correlation is shown to exist between the average SME index (SMEaver) and interplanetary medium parameters during the magnetic storm main phase. Close correlation coefficients between SMEaver and the SW electric field (southward IMF Bz) have been obtained for CIR and ICME events. SMEaver has been found to increase with the rate of magnetic storm development and |Dstmin|. For CIR and ICME events, no difference has been revealed between SMEaver and |Dstmin| in linear regression equations.

magnetic storm, SME index, Dst index, solar wind, electric field
Publication text (PDF): Read Download

1. Akasofu S.-I., Chapman S. Solnechno-zemnaya fizika. Chast’1. [Solar-Terrestrial Physics. Pt. 1]. Moscow, Mir Publ., 1974, 384 p. (In Russian). (English edition: Akasofu S.-I., Chapman S. Solar-Terrestrial Physics. Oxford, Clarendon Press, 1972, 901 p.)

2. Bartels J. The standardized index Ks and the planetary index Kp. IATME Bull. 1949, no. 12b, pp. 97-120.

3. Borovsky J.E., Denton M.H. Differences between CME driven storms and CIR driven storms. J. Geophys. Res. 2006, vol. 111, A07S08. DOI:

4. Borovsky J.E., Birn J. The solar wind electric field does not control the dayside reconnection rate. J. Geophys. Res. 2014, vol. 119, pp. 751-760. DOI:

5. Boroyev R.N., Vasiliev M.S. Substorm activity during the main phase of magnetic storms induced by the CIR and ICME events. Adv. Space Res. 2018, vol. 61, pp. 348-354.DOI:

6. Boroyev R.N., Vasiliev M.S., Baishev D.G. The relationship between geomagnetic indices and the interplanetary medium parameters in magnetic storm main phases during CIR and ICME events. J. Atmos. Solar-Terr. Phys. 2020, vol. 204, 105290. DOI:

7. Burton R.K., McPherron R.L., Russell C.T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975, vol. 80, pp. 4204-4214. DOI: 080i031p04204.

8. Cramer W.D., Turner N.E., Fok M.C., Buzulukova N.Y. Effects of different geomagnetic storm drivers on the ring current: CRCM results. J. Geophys. Res. 2013, vol. 118, pp. 1062-1073. DOI:

9. Davis T.N., Sugiura M. Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 1966, vol. 71, pp. 785-801. DOI:

10. Dremukhina L.A., Lodkina I.G., Yermolaev Y.I. Relationship between the parameters of various solar wind types and geomagnetic activity indices. Cosmic Res. 2018a, vol. 56, no. 6, pp. 426-433. DOI:

11. Dremukhina L.A., Lodkina I.G., Yermolaev Y.I. Statistical study of the effect of different solar wind types on magnetic storm generation during 1995-2016. Geomagnetism and Aeronomy. 2018b, vol. 58, no. 6, pp. 737-743. DOI:

12. Du A.M., Wang K.T., Luo H., Tsurutani B.T., JesperGjerloev, Wei Sun, Wang Y., Jiaming Ou, Yasong Ge. Coupling of semiannual and annual variations in the SuperMAG SML and SMU indices. Planet. Space Sci. 2018, vol. 158, pp. 87-95. DOI:

13. Gonzalez W.D., Joselyn J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T., Vasyliunas V.M. What is a geomagnetic storm? J. Geophys. Res. 1994, vol. 99, iss. A4, pp. 5771-5792. DOI:

14. Gonzalez W.D., Tsurutani B.T., Gonzalez A.L.C. Interplanetary origin of geomagnetic storms. Space Sci. Rev. 1999, vol. 88, pp. 529-562. DOI:

15. Grafe A., Feldstein Y.I. About the relationship between auroral electrojets and ring currents. Ann. Geophys. 2000, vol. 18, pp. 874-886. DOI:

16. Grafe A., Bespalov P.A., Trakhtengerts V.Y., Demekhov A.G. Afternoon mid-latitude current system and low-latitude geomagnetic field asymmetry during geomagnetic storms. Ann. Geophys. 1997, vol. 15, pp. 1537-1547. DOI:

17. Guo J., Feng X., Emery B.A., Zhang J., Xiang C., Shen F., Song W. Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res. 2011, vol. 116, A05106. DOI: 10.1029/ 2011jA016490.

18. Kane R.P. How good is the relationship of solar and interplanetary plasma parameters with geomagnetic storms? J. Geophys. Res. 2005, vol. 110, A02213. DOI: 010799.

19. Kane R.P. Scatter in the plots of Dst(min) versus Bz(min). Planet. Space Sci. 2010, vol. 58, pp. 1792-1801. DOI:

20. Khorosheva O.V. Relation of geomagnetic disturbances to the dynamics of the magnetosphere and the parameters of the interplanetary medium. Geomagnetism and Aeronomy. 2007, vol. 47, no. 5, pp. 543-547. DOI:

21. Maltsev Yu.P., Rezhenov B.V. Relation of the Dst index to solar wind parameters. International Journal of Geomagnetism and Aeronomy. 2003, vol. 4, no. 1, pp. 1-9.

22. Newell P.T., Gjerloev J.W. Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. J. Geophys. Res. 2011, vol. 116, A12232. DOI:

23. Newell P.T., Gjerloev J.W. SuperMAG-based partial ring current indices. J. Geophys. Res. 2012, vol. 117, A05215. DOI:

24. Newell P.T., Sotirelis T., Liou K., Meng C.-I., Rich F.J. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. 2007, vol. 112, A01206. DOI: 10.1029/ 2006JA012015.

25. Newell P.T., Gjerloev J.W., Mitchell E.J. Space climate implications from substorm frequency. J. Geophys. Res. 2013, vol. 118, pp. 6254-6265. DOI:

26. Nikolaeva N.S., Yermolaev Y.I., Lodkina I.G. Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams. Geomagnetism and Aeronomy. 2011, vol. 51, no. 1, pp. 49-65. DOI:

27. Nikolaeva N.S., Yermolaev Y.I., Lodkina I.G., Yermolaev M.Y. Does magnetic storm generation depend on the solar wind type? Geomagnetism and Aeronomy. 2017, vol. 57, no. 5, pp. 512-518. DOI:

28. Plotnikov I.Ya., Barkova E.S. Advances in space research nonlinear dependence of Dst and AE indices on the electric field of magnetic clouds. Adv. Space Res. 2007, vol. 40, pp. 1858-1862. DOI:

29. Sugiura M. Hourly values of the equatorial Dst for IGY. Annales of the International Geophysical Year. 1964, vol. 35. pp. 9-45.

30. Yermolaev Yu.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Yu. Catalog of large-scale solar wind phenomena during 1976-2000. Cosmic Res. 2009, vol. 47, no. 2, pp. 81-94. DOI:

31. Yermolaev Yu.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Yu. Specific interplanetary conditions for CIR-, Sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis. Ann. Geophys. 2010, vol. 28, pp. 2177-2186. DOI:

32. Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Y. Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res. 2012, vol. 117, A00L07. DOI:

33. Yermolaev Y.I., Lodkina I.G., Nikolaeva N.S., Yermolaev M.Y. Does the duration of the magnetic storm recovery phase depend on the storm development rate in its main phase? Geomagnetism and Aeronomy. 2015, vol. 55, no. 4, pp. 421-424. DOI:

34. Yermolaev Y.I., Lodkina I.G., Nikolaeva N.S., Yermolaev M.Y. Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta. Solar Phys. 2017, vol. 292, 193. DOI:

35. Yermolaev Y.I., Lodkina I.G., Dremukhina L.A., Yermolaev M.Y., Khokhlachev A.A. What solar-terrestrial link researchers should know about interplanetary drivers. Universe. 2021, vol. 7, iss. 5, 138. DOI:

36. URL: (accessed March 2, 2021).

37. URL: (accessed March 2, 2021).

38. URL: (accessed March 2, 2021).

39. URL: (accessed March 2, 2021).

Login or Create
* Forgot password?