WOLFRAM-TECHNOLOGIES IN THE IMPLEMENTATION OF THE PRINCIPLE OF VISIBILITY IN TEACHING MATHEMATICAL DISCIPLINES AT THE HIGHER SCHOOL OF ECONOMICS
Abstract and keywords
Abstract (English):
The article focuses on the substantive and methodological features of the implementation of the principle of clarity by means of Wolfram technologies. The need and methodological feasibility of applying Wolfram technologies in the practice of teaching mathematical disciplines at an economic university is justified. Special attention is paid to the management of educational and cognitive activities of students when working with the created base of visualizations of mathematical concepts and objects, as well as the results of economic and mathematical modeling. Recommendations are presented for teachers of mathematical disciplines, compliance with which contributes to a deeper penetration of undergraduate students into the essence of mathematical methods and a meaningful interpretation of the results obtained on their basis. Disassembled and methodically characterized visualizations affect educational situations that arise when studying various mathematical disciplines: Linear Algebra, Higher Mathematics, Probability Theory and Mathematical Statistics, Theory of Optimal Control, Game Theory, etc. Among them is the visualization of the probability of a random variable falling into the interval under the condition of a normal distribution of a random variable, as well as under the condition that a random variable has a Weibul distribution; visualization of probability density of hypergeometric distribution; visualization of a fragment of a function graph on a period length segment; visualization of parallelogram rule for addition of two vectors in three-dimensional space; visualization of the direction field and integral curves when solving the ordinary differential equation of the first order; visualization of the direction field when solving a system of linear differential equations of the first order. The main results of the study of the new instrumental implementation of the classical didactic principle of clarity described in this article can be useful for improving the professional training system of the future bachelor of economics, as well as for designing the content of new professionally significant disciplines in the educational field «Mathematics and mathematical modeling».

Keywords:
mathematical training, visualization, digital technologies, pedagogical technologies, bachelor's degree in economics, visibility, didactic principles
References

1. Abakumova I. V., Mironenkova N. N., Pen'kov D. V. Smyslotehniki, obraschennye k sub'ektnomu opytu obuchayuschegosya kak osnove ego cennostno-smyslovogo vybora na primere matematiki // Rossiyskiy psihologicheskiy zhurnal. - 2019. - T. 16. - № 2. - S. 63-80.

2. Aslanov R. M., Belyaeva E. V., Muhanov S. A. Trenazher po differencial'nym uravneniyam na osnove Wolfram CDF Player // Sibirskiy pedagogicheskiy zhurnal. - 2015. - № 4. - S. 26-30.

3. Verbickiy A. A. Teoriya i tehnologii kontekstnogo obrazovaniya: uchebnoe posobie / A. A. Verbickiy; Ministerstvo obrazovaniya i nauki Rossiyskoy Federacii, Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya «Moskovskiy pedagogicheskiy gosudarstvennyy universitet». - Moskva: MPGU, - 2017. - 266 s.

4. Vlasov D. A., Sinchukov A. V. Ravnovesie Nesha v bimatrichnyh igrah: tehnologiya modelirovaniya i vizualizacii Wolfram Demonstration Project // Sovremennye informacionnye tehnologii i IT-obrazovanie. - 2016. - T. 12. - № 4. - S. 209-216.

5. Denezhkina I. E., Zadadaev S. A. Proverka statisticheskih gipotez s ispol'zovaniem sredstv vizualizacii v srede Rstudio / V sbornike: Sistemnyy analiz v ekonomike - 2018. Sbornik trudov V Mezhdunarodnoy nauchno-prakticheskoy konferencii-biennale. Pod obschey redakciey G.B. Kleynera, S.E. Schepetovoy. - 2018. - S. 181-184.

6. Zadadaev S. A. Matematika na yazyke R: uchebnik / Finansovyy universitet pri Pravitel'stve RF. - Moskva: Prometey, 2018. - 324 s.

7. Kalinina E. S. Integrativnyy podhod v obuchenii matematicheskim i estestvennonauchnym disciplinam v VUZah MChS Rossii // Sovremennoe obrazovanie: soderzhanie, tehnologii, kachestvo. - 2018. - T. 1. - S. 86-89.

8. Karasev P. A., Chaykovskaya L. A. Sovershenstvovanie programm vysshego obrazovaniya v kontekste sovremennyh trebovaniy rynkov obrazovatel'nyh uslug i professional'nogo soobschestva // Ekonomika i upravlenie: problemy, resheniya. - 2017. - T. 3. - № 2. - S. 3-9.

9. Kolesina K.Yu., Miroshnichenko A.V., Saidov A.A., Grimsoltanova R.E. Integrativnye processy kak soderzhatel'no-processual'noe yadro metaproektnogo obucheniya // Rossiyskiy psihologicheskiy zhurnal. - 2016. - T. 13. - № 3. - S. 73-88.

10. Konnova L. P., Rylov A. A., Stepanyan I. K. Kontentno-kontekstnaya model' obucheniya matematike v ekonomicheskom vuze // Standarty i monitoring v obrazovanii. - 2019. - T. 7. - № 6. - S. 29-35.

11. Lihachev G. G., Suhorukova I. V. Komp'yuternoe modelirovanie i matematicheskoe obespechenie ekonomiko-social'nyh zadach // Ekonomicheskiy analiz: teoriya i praktika. - 2003. - № 5 (8). - S. 60-62.

12. Matematika dlya ekonomistov. Praktikum: uchebnoe posobie dlya akademicheskogo bakalavriata / Pod obschey redakciey O. V. Tatarnikova. - Moskva: Izdatel'stvo Yurayt, 2014. - 285 s.

13. Matematika dlya ekonomistov. Teoriya i praktika: uchebnik dlya akademicheskogo bakalavriata / Pod obschey redakciey O. V. Tatarnikova. - Moskva: Izdatel'stvo Yurayt, 2014. - 598 s.

14. Monahov V. M. Vvedenie v teoriyu pedagogicheskih tehnologiy / V. M. Monahov. - Volgograd, Peremena, 2006. - 365 s.

15. Monahov V. M., Tihomirov S. A. Evolyuciya metodicheskoy sistemy elektronnogo obucheniya // Yaroslavskiy pedagogicheskiy vestnik. - 2018. - № 6. - S. 76-88.

16. Muhanov S. A., Britvina V. V., Muhanova A. A. Ispol'zovanie tehnologii Wolfram CDF pri izuchenii nelineynyh kolebaniy // Sistemnye tehnologii. - 2018. - № 1 (26). - S. 23-26.

17. Muhanov S. A., Muhanova A. A., Nizhnikov A. I. Ispol'zovanie informacionnyh tehnologiy dlya individualizacii obucheniya matematike na primere temy «Differencial'nye uravneniya» // Vestnik Moskovskogo gorodskogo pedagogicheskogo universiteta. Seriya: Informatika i informatizaciya obrazovaniya. - 2018. - № 1 (43). - S. 72-77.

18. Smirnov E. I. Tehnologiya naglyadno-model'nogo obucheniya matematike - Yaroslavl', Yaroslavskiy gosudarstvennyy pedagogicheskiy universitet im. K. D. Ushinskogo, 1998. - 335 s.

19. Smirnov E. I. Fundirovanie opyta v professional'noy podgotovke i innovacionnoy deyatel'nosti pedagoga. - Yaroslavl', Izdatel'stvo «Kancler» 2012. - 655 c.

20. Tatarnikov O. V., Shved E. V. Teoriya veroyatnostey i matematicheskaya statistika dlya ekonomistov. - M.: «KnoRus», 2018. - 206 s.

21. Testov V. A. Osnovnye zadachi razvitiya matematicheskogo obrazovaniya // Obrazovanie i nauka. - 2014. - № 4 (113). - S. 3-17.

22. Tihomirov N. P., Tihomirova T. M. Risk-analiz v ekonomike. M.: ZAO «Izdatel'stvo «Ekonomika». - 2010. - 318 s.

23. Feklin V. G. Ispol'zovanie LMS Moodle dlya sozdaniya elektronnogo matematicheskogo kursa // Sovremennaya matematika i koncepcii innovacionnogo matematicheskogo obrazovaniya. - 2014. - T. 1. - № 1. - S. 233-240.

24. Fomin G. P., Karasev P. A. Matematika v ekonomike: 813 zadach s kommentariyami i otvetami. - Moskva: «KnoRus», 2019. - 368 s.

25. Hotz, Ingrid & Bujack, Roxana & Garth, Christoph & Wang, Bei. (2019). Mathematical Foundations in Visualization.

26. Laidlaw, David & Vilanova, Anna. (2012). Mathematics and Visualization.https://doi.org/10.1007/978-3-642-27343-8.

27. Rudolf Arnheim Art and Visual Perception: A Psychology of the Creative Eye Art Psychology. - University of California Press, 2004 - 508 p.

Login or Create
* Forgot password?