Abstract and keywords
Abstract (English):
Using the results of continuous long-term observations over 50 years (including solar cycles 20–24), we study the relationship between Earth’s seismicity and solar activity. An increase in the number of strong earthquakes on the planet occurs during the decline phase of solar activity when charged particle fluxes from high-latitude coronal holes increase, as well as during solar minimum when the intensity of galactic cosmic rays reaches a maximum. The change in the number of strong earthquakes (with magnitude 6) is considered in terms of variations in the intensity of galactic cosmic rays, Forbush decreases, and ground level enhancements in solar cosmic rays (GLE events). The number of strong earthquakes is shown to increase after Forbush decreases with a time lag from ~1 to ~6 days depending on the amplitude of Forbush decrease and after GLE events the number of strong earthquakes increases by ~8 day. In the number of strong earthquakes, a six-month variation is observed, which seems to follow the six-month variation in cosmic rays with a delay of ~1–2 months. It is surmised that the relationship between solar activity and Earth’s seismicity seems to be mediated through the modulation of galactic cosmic rays and atmospheric processes that provoke the occurrence of earthquakes in regions where the situation has already been prepared by tectonic activity.

solar activity, cosmic rays, atmosphere, seismicity
Publication text (PDF): Read Download

1. Belov A.V., Gushchina R.T., Balabin YU.V. Annual variation and heliolatitude dependence of cosmic ray density. Izvestiya RAN. Seriya fizicheskaya [Bulletin of the Russian Academy of Sciences. Physics]. 2015, no. 5, pp. 672-675. (In Russian). DOI:

2. Bokov V.N. Variability of atmospheric circulation - the initiator of strong earthquakes. Ural’skii geofizicheskii vestnik [Ural Geophysical Bulletin]. 2004, no. 6, pp. 5-11. (In Russian).

3. Bokov V.N. On the relationship of atmospheric circulation and seismicity in the range of seasonal variability. Uchenye zapiski RGGMU [Scientific Notes of the RSMU]. 2010, no. 14, pp. 89-100. (In Russian).

4. Bokov V.N., Lebedev S.V. Exogenous processes and seismicity. Triggernye effekty v geosistemakh [Trigger Effects in Geosystems]. Moscow, GEOS Publ., 2017, pp. 379-386. (In Russian).

5. Bokov V.N., Vorob’ev V.N. On the relationship of strong earthquakes with atmospheric circulation in the seasonal and interannual ranges of variability. Sbornik trudov konferentsii «Yubeleinye chteniya pamyati A.L. Chizhevskogo, posvyashchennye 110-letiyu uchenogo» [Proceedings of the Conference “Anniversary Readings in Memory of A.L. Chizhevsky Dedicated to the 110th Anniversary of the Scientist”]. St. Petersburg, Politekhnicheskii universitet Publ., 2007, pp. 51-56. (In Russian).

6. Bokov V.N., Vorob’ev V.N. The effect of atmospheric circulation on the inclination of the Earth. Uchenye zapiski RGGMU [Scientific Notes of the RSMU]. 2012, no. 26, pp. 173-184. (In Russian).

7. Bokov V.N., Vorob’ev V.N. Variability of geoacoustic emissions and changes in atmospheric circulation. Uchenye zapiski RGGMU [Scientific Notes of the RSMU]. 2013, no. 31, pp. 173-184. (In Russian).

8. Bokov V.N., Vorob’ev V.N. Monitoring of geophysical precursors and earthquake prediction. Uchenye zapiski RGGMU [Scientific Notes of the RSMU]. 2014, no. 36, pp. 128-138. (In Russian).

9. Bokov V.N., Vorob’ev V.N. Variations in the surface temperature of the Earth's crust under the influence of atmospheric pressure variability. Uchenye zapiski RGGMU [Scientific Notes of the RSMU]. 2016, no. 43, pp. 106-115. (In Russian).

10. Bokov V.N., Gutshabash E.Sh., Potikha L.Z. Atmospheric processes as a trigger effect of earthquakes. Uchenye zapiski RGGMU [Scientific Notes of the RSMU]. 2011, no. 18, pp. 173-184. (In Russian).

11. Chukin V.V. Correlation data on the relationship between the flux of cosmic rays and the global number of clouds. Fundamental’nye issledovaniya [Basic Research]. 2007, no. 7, pp. 78-79. (In Russian).

12. Dorman L. Cosmic Rays in the Earth’s Atmosphere and Underground. Dordrecht, Springer Netherlands, 2004, 862 p. DOI:

13. Dorman L.I., Luzov A.A., Mamrukova V.P. Annual variations of cosmic rays and changes in the intensity of cosmic radiation in the function of the heliolatitude of the Earth. Doklady Akademii nauk SSSR [Doklady of the Academy of Sciences of the USSR]. 1967, no. 4, pp. 833-836. (In Russian).

14. Duplissy J., Enghoff M.B., Aplin K.L., Arnold F., Aufmhoff H., Avngaard M., Baltensperger U., et al. Results from the CERN pilot CLOUD experiment. Atmos Chem. Phys. 2010, vol. 10 no. 4, pp. 1635-1647. DOI:

15. Enghoff M.B., Pedersen J.O.P., Uggerhøj U.I., Paling S.M., Svensmark H. Aerosol nucleation induced by a high energy particle beam. Geophys. Res. Lett. 2011, vol. 38, no. 9, L09805. DOI: 10.1029.2011GL047036.

16. Ermakov V.I., Stozhkov Y.I. Thunderstorm cloud physics. Preprint no. 2. Moscow, Lebedev Physical Institute Publ., 2004, 36 p. (In Russian).

17. Gokhberg M.B., Gufel’d I.L., Dobrovol’sky I.N., Nersenov I.L. Preparation processes, signs and harbingers of crustal earthquakes. Izvestiya AN SSSR. Fizika Zemli [Izvestiya of the Academy of Sciences of the USSR. Physics of the Solid Earth]. 1983, no. 2, pp. 59-67. (In Russian).

18. Golitsyn B.B. Lektsii po seismometrii [Lectures on seismometry]. St. Petersburg, Imperatorskaya AN Publ., 1912, 486 p. (In Russian).

19. Gutenberg B. Osnovy seysmologii [Seismology Basics], Moscow, Leningrad, ONTI Publ., 1935, 146 p. (In Russian).

20. Gutenberg B., Richter C.F. Seismicity of the Earth and associated Phenomena. Princeton, Princetion Univ. Press, 1954, 310 p.

21. Hahn C.J., Rossow W.B., Warren S.G. ISCCP cloud properties associated with standard cloud types identified in individual surface observations. J. Climate. 2001, vol. 14, pp. 11-28. DOI:<0011:ICPAWS>2.0.CO;2.

22. Harrison R.G. The global atmospheric electrical circuit and climate. Sur. Geophys. 2004, vol. 25, pp. 441-484. DOI:

23. Harrison R.G., Tammet H. Ions in the terrestrial atmosphere and other solar system atmospheres. Space Sci. Rev. 2008, vol. 137, pp. 107-118. DOI:

24. Hatton C.J., Carmichael H. Experimental invectigation of the NM-64 Neutron monitor. Canad. J. Phys. 1964, vol. 42, pp. 2443-2472.

25. Kniveton D.R. Precipitation, cloud cover and Forbush decreases in galactic cosmic rays. J. Atmos. Solar Terr. Phys. 2004, vol. 66, iss. 13-14, pp. 1135-1142. DOI:

26. Khrgian A.Kh. Fizika atmosfery [Atmospheric physics]. Moscow, MGU Publ., 1986, 328 p. (In Russian).

27. Kropotkin P.N., Lyustikh A.E. Seasonal periodicity of earthquakes and Newton-Mach principle. Doklady Akademii nauk SSSR [Doklady of the Academy of Sciences of the USSR]. 1974, no. 5, pp. 1061-1064. (In Russian).

28. Krymsky G.F. Cosmic rays and the Earth's atmosphere: facts and hypotheses. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2006, iss. 9, pp. 44-46. (In Russian).

29. Krymsky G.F., Krivoshapkin P.A., Mamrukova V.P., Skri-pin G.V. Effects of the interaction of the heliomagnetosphere with the galactic field in cosmic rays. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1981, no. 5, pp. 923-928. (In Russian).

30. Krymsky G.F., Krivoshapkin P.A., Mamrukova V.P., Gerasimova S.K. Heliospheric modulation of high-energy cosmic rays: II. Deformation of the neutral surface. J. Exp. Theor. Phys. 2007, vol. 104, no. 2, pp. 196-200. DOI:

31. Krymsky G.F., Krivoshapkin P.A., Mamrukova V.P., Gerasimova S.K. North-south asymmetry of the heliosphere from cosmic-ray observations. Astronomy Lett. 2009, vol. 35, pp. 333-337. DOI:

32. Krymsky G.F., Krivoshapkin P.A., Gerasimova S.K., Gololobov P.Yu. Cosmic-ray anisotropy and density near the neutral sheet of the interplanetary magnetic field. Astronomy Lett. 2012, vol. 38, no. 9, pp. 605-608. DOI:

33. Kudryavtsev I.V., Jungner H. To the link between anomalies of the Earth's cloud cover at various heights and variations of the cosmic ray intensity. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2008, iss. 12, pp. 301-304. (In Russian).

34. Kudryavtsev I.V., Jungner H. Variations in atmospheric transparency under the action of galactic cosmic rays as a possible cause of their effect on the formation of cloudiness. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2011, vol. 51, 656. DOI:

35. Lee S.H., Reeves J.M., Wilson J.C., Hunton D.E., Viggiano A.A., Miller T.M., Ballenthin J.O., Lait L.R. Particle formation by ion nucleation in the upper troposphere and lower stratosphere. Science. 2003, vol. 301, pp. 1886-1889. DOI:

36. Lushnikov A.A., Lyubovtseva Yu.S., Gvishiani A.D., Zagaynov V.A. Nanoaerosol formation in the troposphere under the action of cosmic radiation. Izvestiya. Atmospheric and Oceanic Physics. 2014, vol. 50, no. 2, pp. 152-159. DOI:

37. Marsh N.D., Svensmark H. Low clouds properties influenced by cosmic rays. Phys. Rev. Lett. 2000, vol. 85, pp. 5004-5007. DOI:

38. Mironova I.A., Desorgher L., Usoskin I.G., Flückiger E.O., Bütikofer R. Variations of aerosol optical properties during the extreme solar event in January 2005. Geophys. Res. Lett. 2008, vol. 35, L8610. DOI:

39. Pallé E., Butler C.J., O’Brien K. The possible connection between ionization in the atmosphere by cosmic rays and low level clouds. J. Atm. Solar-Terr. Phys. 2004, vol. 66, pp. 1779-1790. DOI:

40. Pudovkin M.I., Veretenenko S.V. Cloudiness decreases associated with Forbush-decreases of galactic cosmic rays. J. Atmos. Terr. Phys. 1995, vol. 57, no. 11, pp. 1349-1355. DOI:

41. Roldugin V.C., Tinsley B.A. Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations. J. Atmos. Solar-Terr. Phys. 2004, vol. 66, iss. 13-14, pp. 1143-1149. DOI:

42. Russo P. Zemletryaseniya [Earthquakes]. Moscow, Progress Publ., 1966, 247 p. (In Russian). (French edition: Rousseau P. Les Tremblements de Terre [Earthquakes]. Hachette, 1961. 269 p.).

43. Sobolev G.A., Shestopalov I.P., Kharin E.P. Geoeffective solar flares and Earth’s seismic activity. Fizika Zemli [Izvestiya. Physics of the Solid Earth]. 1998, no. 7, pp. 85-90. (In Russian).

44. Sytinsky A.D. Svyaz’ seismichnosti Zemli s solnechnoi aktivnost’yu i atmosfernymi protsessami [The relationship of Earth’s seismicity with solar activity and atmospheric processes]. Leningrad, Gidrometeoizdat Publ., 1987, 100 p. (In Russian).

45. Sytinsky A.D. On the relationship of earthquakes with solar activity. Izvestiya Akademii nauk SSSR. Fizika Zemli [Izvestiya of the Academy of Sciences of the USSR. Physics of the Solid Earth]. 1989, no. 2, pp. 13-29. (In Russian).

46. Sytinsky A.D., Oborin D.A. Influence of disturbances of the interplanetary medium on the seismicity and atmosphere of the Earth. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1997, vol. 37, pp. 138-141. (In Russian).

47. Svensmark H. Influence of cosmic rays on Earth’s climate. Phys. Rev. Lett. 1998, vol. 81, no. 22, pp. 5027-5030. DOI:

48. Svensmark H. Cosmic rays and Earth’s climate. Space Sci. Rev. 2000, vol. 93, pp. 175-185. DOI:

49. Tinsley B.A. Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere. Space Sci. Rev. 2000, vol. 94, no. 1-2, pp. 231-258. DOI:

50. Tinsley B.A. A working hypothesis for connections between electrically-induced changes in cloud microphysics and storm vorticity, with possible effects on circulation. Adv. Space Res. 2012, vol. 50, iss. 6, pp. 791-805. DOI:

51. Tinsley B.A., Zhou L. Initial results of a global circuit model with stratospheric and tropospheric aerosols. J. Geophys. Res. 2006, vol. 111, D16205. DOI:

52. Tinsley B.A., Brown G.M., Scherrer P.H. Solar variability influences on weather and climate: Possible connections through cosmic ray fluxes and storm intensification. J. Geophys. Res. 1989, vol. 94, no. D12, pp. 14783-14792. DOI:

53. Usoskin I.G., Kovaltsov G.A. Cosmic ray induced ionization in the atmosphere: Full modeling and practical applications. J. Geophys. Res. 2006, vol. 111, D21206. DOI:

54. Usoskin I.G., Gladysheva O.G., Kovaltsov G.A. Cosmic ray induced ionization in the atmosphere: Spatial and temporal changes. J. Atmos. Solar-Terr. Phys. 2004, vol. 66, no. 18, pp. 1791-1796. DOI:

55. Usoskin I.G., Kovaltsov G.A., Mironova I.A. Cosmic ray induced ionization model CRAC: CRII: an extension to the upper atmosphere. J. Geophys. Res. 2010, vol. 115, D10302. DOI:

56. Veretenenko S.V., Pudovkin M.I. Effects of Forbush cosmic-ray drops in variations of total cloud cover. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1994, no. 4, pp. 38-44. (In Russian).

57. Veretenenko S., Thejll P. Effects of energetic solar proton events on the cyclone development in the North Atlantic. J. Atmos. Solar Terr. Phys. 2004, vol. 66, no. 5, pp. 393-405. DOI:

58. Voiculescu M., Usoskin I.G., Mursula K. Different response of clouds to solar input. Geophys. Res. Lett. 2006, vol. 33, L21802. DOI:

59. Yanchukovsky V.L. Multichannel cosmic rays observation complex. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2010, iss. 16, pp. 107-109. (In Russian).

60. Yanchukovsky V.L., Yanchukovsky A.L., Krasavin V.V., et al. Multiple Neutron Monitor. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Research on Geomagnetism, Aeronomy and Solar Physics]. 1971, iss. 20, pp. 396-404. (In Russian).

61. Yaroshevich M.I. On some similar regularities of cyclonic and seismic activity. Izvestiya. Atmospheric and Oceanic Physics. 2019, vol. 55, no. 3, pp. 281-284. DOI:

62. URL: (accessed March 10, 2020).

63. URL: (accessed March 10, 2020).

64. URL: (accessed March 10, 2020).

65. URL: (accessed March 10, 2020).

66. URL: (accessed March 10, 2020).

67. URL: (accessed March 10, 2020).

68. URL: (accessed March 10, 2020).

69. URL: &id=49&page=2 (accessed March 10, 2020).

70. URL: (accessed March 10, 2020).

71. URL: data/nmd_e.html (accessed March 10, 2020).

72. URL: (accessed March 10, 2020).

73. URL: (accessed March 10, 2020).

74. URL: (accessed March 10, 2020).

75. URL: (accessed March 10, 2020).

Login or Create
* Forgot password?