DESCRIPTIVE GEOMETRY PROBLEMS VISUALIZATION BY WOLFRAM MATHEMATICA
Abstract and keywords
Abstract (English):
The possibilities of Wolfram Mathematica (WM), which is a package of symbolic mathematics, are endless. In this paper are investigated the possibilities of WM software product contextualization in the process of geometric-graphic teaching of students; is considered the experience for using a set of WM computational algorithms in teaching practice. The source codes and output data of our own WOLFRAM projects are offered, which are illustrative, in the form of interactive graphs, visualization of the solution for one of DG course’s basic problems on construction of points A, B, C and D, given by coordinates in space; construction a plane of general position passing through points A, B and C; determining positions of these points and the constructed plane in space; and also on determining the point D belonging to this plane. Have been presented examples of several of the existing WOLFRAM projects in the form of interactive graphs used in teaching. The study of applied issues and the ability to translate a professional problem into mathematical language, working in WM, provides a student with an opportunity to assimilate the necessary competencies. Interactive visualization of solving DG problems, which can be carried out using WM, together with traditional problem solving, enriches the content of geometric education, introduces new opportunities in organization of the educational process, allows stimulate, maintain and increase students' interest in studying the discipline and further research in the area of DG. However, the ability to work in WM cannot replace the fundamental knowledge obtained by students of a technical high educational institute from the traditional course, but only complements the DG course by WM acquaintance.

Keywords:
WOLFRAM MATHEMATICA (WM), Descriptive Geometry (DG)
References

1. Bukusheva A.V. Sistemy` komp`yuternoj matematiki v uchebny`x proektax po geometrii [Computer mathematics systems in educational projects in geometry]. Vestnik Permskogo gosudarstvennogo gumanitarno-pedagogicheskogo universiteta. Seriya: Informacionny`e komp`yuterny`e texnologii v obrazovanii [Bulletin of the Perm State Humanitarian and Pedagogical University. Series: Information Computer Technologies in Education]. 2016, V. 1, I. 12, pp. 20-28. Available at: https://cyberleninka.ru/article/n/sistemy-kompyuternoy-matematiki-v-uchebnyh-proektah-po-geometrii (accessed 24 May 2020). (in Russian)

2. Ivanov V.N., Krivoshapko S.N., Romanova V.A. Osnovy razrabotki i vizualizacii ob"ektov analiticheskih poverhnostej i perspektivy ih ispol'zovaniya v arhitekture i stroitel'stve [Fundamentals of the development and visualization of objects of analytical surfaces and the prospects for their use in architecture and construction]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 1, I. 4, pp. 3-14. DOI:https://doi.org/10.12737/article_5a17f590be3f51.37534061. (in Russian)

3. Ignat'ev S.A. Tekhnologii testirovaniya v ocenke predmetnoj gotovnosti studentov k izucheniyu geometro-graficheskih disciplin vuza [Testing technologies in assessing the subject readiness of students to study the geometric-graphic disciplines of the university]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 4, pp. 65-75. DOI:https://doi.org/10.12737/2308-4898-2020-65-75. (in Russian)

4. Ignat'ev S.A. Opyt razrabotki elektronnyh sredstv obucheniya dlya prepodavaniya geometro-graficheskih disciplin [Experience of development of electronic learning tools for teaching geometro-graphic disciplines]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 2, pp. 84-92. - DOI:https://doi.org/10.12737/article_5953f362d92c46.58282826. (in Russian)

5. Mostovskoj A.P. Geometriya i sistema Mathematica [Geometry and the Mathematica System]. Izdatel`stvo Nobel` Press [Publisher Nobel Press]. 2014, 309 p. (in Russian)

6. Panchenko V.A. Sovremennye sredstva obucheniya graficheskim disciplinam studentov zaochnoj formy obucheniya [Modern means of teaching graphic disciplines of students of correspondence courses]. Geometriya i grafika [Geometry and Graphics]. 2018. V. 6. I. 4. pp. 72-87. - DOI:https://doi.org/10.12737/article_5c21fa732f6b62.81431444. (in Russian)

7. Savel'ev YU.A., Babich E.V. Komp'yuternaya metodika izucheniya nachertatel'noj geometrii. Tekhnicheskoe zadanie [Computer technique for the study of descriptive geometry. Terms of Reference]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 1, pp. 67-74. DOI:https://doi.org/10.12737/article_5ad09d62e8a792.47611365. (in Russian)

8. Sal'kov N.A. Geometricheskaya sostavlyayushchaya tekhnicheskih innovacij [The geometric component of technical innovation]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 2, pp. 85-93. - DOI:https://doi.org/10.12737/article_5b55a5163fa053.07622109. (in Russian)

9. Stepura E.A. Primenenie sistemy` komp`yuternoj matematiki WOLFRAM MATHEMATICA pri reshenii zadach nachertatel`noj geometrii [Application of computer mathematics wolfram mathematica in solving problems descriptive geometry]. Vestnik MGSU [Bulletin of MGSU]. 2011, V. 2, I. 2, pp. 352-357. Available at: https://cyberleninka.ru/article/n/primenenie-sistemy-kompyuternoy-matematiki-wolfram-mathematica-pri-reshenii-zadach-nachertatelnoy-geometrii-1 (accessed 24 May 2020). (in Russian)

10. Taranchuk V.B. Instrumenty` i sredstva WOLFRAM MATHEMATICA dlya razrabotki intellektual`ny`x obuchayushhix sistem. [WOLFRAM MATHEMATICA tools and tools for the development of intelligent learning systems]. Vestnik Poloczkogo gosudarstvennogo universiteta [Bulletin of Polotsk State University]. 2015, V. 1, I. 7, pp. 47-53. Available at: https://www.elibrary.ru/item.asp?id=24097815 (accessed 24 May 2020). (in Russian)

11. Tarasov V.N. Ispol`zovanie simvol`ny`x sistem matematiki v vy`sshem obrazovanii dlya resheniya geotexnicheskix zadach [Use of symbolical systems of mathematics in higher education and for the decision of geotechnical problems]. Aktual`ny`e problemy` voenno-nauchny`x issledovanij [Actual problems of military scientific researches]. 2020, V. 6, I. 7, pp. 405-409. Available at: https://www.elibrary.ru/item.asp?id=42615919 (accessed 24 May 2020). (in Russian)

12. Turutina T.F. Primenenie informacionnyh tekhnologij v metodike proverki graficheskoj gramotnosti budushchih specialistov [The use of information technology in the methodology of checking graphic literacy of future specialists]. Geometriya i grafika [Geometry and Graphics]. 2020, V. 8, I. 1, pp. 45-56. DOI:https://doi.org/10.12737/2308-4898-2020-45-56. (in Russian)

13. Usataya T.V., Deryabina L.V., Reshetnikova E.S. Sovremennye podhody k proektirovaniyu izdelij v processe obucheniya studentov komp'yuternoj grafike [Modern approaches to product design in the process of teaching students computer graphics]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 1, pp. 74-82. DOI:https://doi.org/10.12737/article_5c91fd2bde0ff7.07282102. (in Russian)

14. Fedoseeva M.A. Metodika podgotovki studentov tekhnicheskih vuzov graficheskim disciplinam [Methods of preparing students of technical universities for graphic disciplines]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 1, pp. 68-73. DOI:https://doi.org/10.12737/article_5c91fed8650bb7.79232969. (in Russian)

15. Xejfecz A.L. Geometricheski tochnaya 3D animaciya kinematicheskix poverxnostej [Geometrically accurate 3D animation of kinematic surfaces]. Available at: http://dgng.pstu.ru/conf2017/papers/78 (accessed 24 May 2020). (in Russian)

16. Beck G. Intersecting a Rotating Cone with a Plane. Available at: https://demonstrations.wolfram.com/IntersectingARotatingConeWithAPlane/ (accessed 24 May 2020).

17. Bryant J., Chang Yu-S. Tangent to a Surface. - Available at: https://demonstrations.wolfram.com/TangentToASurface/ (accessed 24 May 2020).

18. Gorjanc S. (2004). Some Examples of Using Mathematica and webMathematica in Teaching Geometry. Journal for Geometry and Graphics. V. 8, I. 2, pp. 243-253. - Available at: https://www.researchgate.net/publication/228988093_Some_Examples_of_Using_Mathematica_and_webMathematica_in_Teaching_Geometry (accessed 24 May 2020).

19. Hafner I. Three Orthogonal Projections of Polyhedra. - Available at: https://demonstrations.wolfram.com/ThreeOrthogonalProjectionsOfPolyhedra/ (accessed 24 May 2020).

20. Núñez Y.T., Belcastro S.-M. Multiple Planes through Surfaces. - Available at: https://demonstrations.wolfram.com/MultiplePlanesThroughSurfaces/ (accessed 24 May 2020).

21. Ramsden P. Conic section: The Double Cone. - Available at: https://demonstrations.wolfram.com/ConicSectionsTheDoubleCone/ (accessed 24 May 2020).

22. Schwaad G., Lorbeer C. Tangent Planes to Quadratic Surfaces. - Available at: https://demonstrations.wolfram.com/TangentPlanesToQuadraticSurfaces/ (accessed 24 May 2020).

Login or Create
* Forgot password?