Moskva, Russian Federation
Schmidt Institute of Physics of the Earth, RAS
Geophysical Center RAS
Moscow, Russian Federation
UDK 55 Геология. Геологические и геофизические науки
We have studied MHD waves (Alfvén and fast compressional modes) in a homogeneous collisional three-component low-β plasma. The three-component plasma consists of electrons, ions, and neutrals with arbitrary ratio between collision frequencies and wave time scales. We have derived a general dispersion equation and relationships for phase velocity and collisional damping rates for MHD modes for various limiting cases: from weak collisions to a strong collisional coupling, and for longitudinal and oblique propagation. In a weak collision limit, the MHD eigen-modes are reduced to ordinary low-damping Alfvén and fast magnetosonic waves. For a partially ionized plasma with a strong collisional coupling of neutrals and ions, velocities of magnetosonic and Alfvén waves are substantially reduced, as compared to the Alfvén velocity in the ideal MHD theory. At a very low frequency, when neutrals and ions are strongly coupled, a possibility arises of weakly damping MHD modes, called “decelerated” MHD modes. These modes can be observed in the solar corona/chromosphere and in the F layer of the terrestrial ionosphere.
Sun, terrestrial ionosphere, collisional plasma, MHD waves
1. Ballester J.L., Alexeev I.I., Collados M., Downes T., Pfaff R.F., Gilbert H., et al. Partially ionized plasmas in astrophysics. Space Sci. Rev. 2018, vol. 214, iss. 2, article id. 58. DOI:https://doi.org/10.1007/s11214-018-0485-6.
2. Balthasar H., Wiehr E., Schleicher H., Wohl H. Doppler oscillations in solar prominences simultaneously observed with two telescopes: Discovery of a 30 s oscillation. Astron. Astrophys. 1993, vol. 277, pp. 635-638.
3. Barkhatov N.A., Barkhatova O.M., Grigor’ev G.I. Spectral characteristics of magnetogravity waves generated by high-energy mass source in the equatorial region of the atmosphere. Part I. Geomagnetism and Aeronomy. 2014, vol. 54, no. 6, pp. 819-831.
4. Barhatova O.M., Barhatov N.A., Grigoriev G.I. Discovery of magnetogravitational waves in the ionosphere using maximal observed frequencies at oblique radio sounding paths. Izv. Vuzov. Radiophysics. 2009, vol. 52, no. 10, pp. 761-778.
5. Cally P.S. Alfvén reflection and reverberation in the solar atmosphere. Solar Phys. 2012, vol. 280, pp. 33-50. DOI:https://doi.org/10.1007/s11207-012-0052-3.
6. de Pontieu B., Haerendel G. Weakly damped Alfvén waves as drivers for spicules. Astron. Astrophys. 1998, vol. 338, pp. 729-736.
7. Foullon C., Verwichte E., Nakariakov V.M. Ultra-long-period oscillations in EUV filaments near to eruption: two-wavelength correlation and seismology. Astrophys. J. 2009, vol. 700, pp. 1658-1665. DOI:https://doi.org/10.1088/0004-637X/700/2/1658.
8. Karlov V.D., Kozlov S.I., Tkachev G.N. Large-scale disturbances in the ionosphere occurring during a passage of rocket with a running engine: A review. Cosmic Res. 1980, vol. 18, no. 2, pp. 266-277.
9. McIntosh S.W., de Pontieu B., Carlsson M., Hansteen V., Boerner P., Goossens M. Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature. 2011, vol. 7357, pp. 475-477. DOI: 10.1038/ nature10235.
10. McLellan A., Winterberg F. Magneto-gravity waves and the heating of the solar corona. Solar Phys. 1968, vol. 4, pp. 401-408. DOI:https://doi.org/10.1007/BF00147905.
11. Menk F.W., Waters C.L., Magnetoseismology. Ground-based remote sensing of Earth’s magnetosphere. Wiley-VCH 2013, 251 p. DOI:https://doi.org/10.1002/9783527652051.app2.
12. Nakariakov V.M., Pilipenko V.A., Heilig B., Jelinek P., Karlicky M., Klimushkin D.Y., et al. Magnetohydrodynamic oscillations in the solar corona and Earth’s magnetosphere: Towards consolidated understanding. Space Sci. Rev. 2016, vol. 200, pp. 75-203.Nekrasov A.K. Compressible streaming instabilities of warm multicomponent collisional magnetized astrophysical disks. Physics of Plasmas. 2008, vol. 15, 032907. DOI: 10.10 63/1.2894561.
13. Nekrasov A.K. Compressible streaming instabilities of warm multicomponent collisional magnetized astrophysical disks // Phys. Plasmas. 2008. V. 15. 032907. DOI: 10.1063/ 1.2894561.
14. Nekrasov A.K. Electromagnetic streaming instabilities of magnetized accretion disks with strong collisional coupling of species. Astrophys. J. 2009, vol. 695, no. 1, pp. 46-58.
15. Nekrasov A.K., Shadmehri M. Multicomponent theory of buoyancy instabilities in astrophysical plasma objects: the case of magnetic field perpendicular to gravity. Astrophys. Space Sci. 2011, vol. 333, pp. 477-490. DOI:https://doi.org/10.1007/s10509-011-0648-3.
16. Pandey B.P., Vranjes J., Krishan V. Waves in the solar photosphere. Monthly Notices of the Royal Astronomical Society. 2008, vol. 386, iss. 3, pp. 1635-1643. DOI:https://doi.org/10.1111/j.1365-2966.2008.13144.x.
17. Pilipenko V., Mazur N., Fedorov E., Engebretson M.J., Murr D.L. Alfvén wave reflection in a curvilinear magnetic field and formation of Alfv´enic resonators on open field lines. J. Geo-phys. Res. 2005, vol. 110, A10S05. DOI:https://doi.org/10.1029/2004JA 010755.
18. Pokhotelov, O.A., Parrot M., Pilipenko V.A., Fedorov E.N., Surkov V.V., Gladyshev V.A. Response of the ionosphere to natural and man-made acoustic sources. Ann. Geophys. 1995, vol. 13, no. 11, pp. 1197-1210.
19. Rodriguez Gomez J.M., Palacios J., Vieira L., Dal Lago A. The plasma β evolution through the solar corona during solar cycles 23 and 24. Astrophys. J. 2019, vol. 884, no. 1. DOI:https://doi.org/10.3847/1538-4357/ab40af.
20. Song P., Gombosi T.I., Ridley A.J. Three-fluid Ohm’s law. J. Geophys. Res. 2001, vol. 106, pp. 8149-8156.
21. Sorokin V.A., Fedorovich G.V. Physics of slow MHD waves in the ionospheric plasma. Moscow, Energoizdat Publ., 1982, 135 p. (In Russian).
22. Tomaczyk S., McIntosh S.W., Keil S.L., Judge P.G., Schad T., Seeley D.H., Edmondson J. Alfvén waves in the solar corona. Science. 2007, vol. 317, no. 5842, pp. 1192-1196. DOI:https://doi.org/10.1126/science.1143304.
23. Tribble A.C., Pickett J.S., d’Angelo N., Murphy G.B. Plasma density, temperature and turbulence in the wake of the Shuttle orbiter. Planetary Space Sci. 1989, vol. 37, pp. 1001-1010. DOI:https://doi.org/10.1016/0032-0633(89)90054-8.
24. Vranjes J., Poedts S., Pandey B.P., de Pontieu D. Energy flux of Alfv´en waves in weakly ionized plasma. Astron. Astrophys. 2008, vol. 478, pp. 553-558.
25. Yumoto K., Pilipenko V., Fedorov E., Kurneva N., Shiokawa K. The mechanisms of damping of geomagnetic pulsations. J. Geomag. Geoelectr. 1995, vol. 47, no. 2, pp. 163-176.
26. Zaqarashvili T.V., Khodachenko M.L., Rucker H.O. Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach. Astron. Astrophys. 2011, vol. 529, A82. DOI:https://doi.org/10.1051/0004-6361/201016326.
27. Zaqarashvili T.V., Carbonell M., Ballester J.I., Khoda-chenko M.L. Cut-off wavenumber of Alfvén waves in partially ionized plasmas of the solar atmosphere. Astron. Astrophys. 2012, vol. 544, A143. DOI:https://doi.org/10.1051/0004-6361/201219763.