Rubrics: REVIEWS
Abstract and keywords
Abstract (English):
This review, offered for the first time in the Russian scientific literature, is devoted to various aspects of the problem of the space weather impact on ground-based technological systems. Particular attention is paid to hazards to operation of power transmission lines, railway automation, and pipelines caused by geomagnetically induced currents (GIC) during geomagnetic disturbances. The review provides information on the main characteristics of geomagnetic field variability, on rapid field variations during various space weather mani-festations. The fundamentals of modeling geoelectric field disturbances based on magnetotelluric sounding algorithms are presented. The approaches to the assessment of possible extreme values of GIC are considered. Information about economic effects of space weather and GIC is collected. The current state and prospects of space weather forecasting, risk assessment for technological systems from GIC impact are discussed. While in space geophysics various models for predicting the intensity of magnetic storms and their related geomagnetic disturbances from observations of the interplanetary medium are being actively developed, these models cannot be directly used to predict the intensity and position of GIC since the description of the geomagnetic field variability requires the development of additional models. Revealing the fine structure of fast geomagnetic variations during storms and substorms and their induced GIC bursts appeared to be important not only from a practical point of view, but also for the development of fundamentals of near-Earth space dynamics. Unlike highly specialized papers on geophysical aspects of geomagnetic variations and engineering aspects of the GIC impact on operation of industrial transformers, the review is designed for a wider scientific and technical audience without sacrificing the scientific level of presentation. In other words, the geophysical part of the review is written for engineers, and the engineering part is written for geophysicists. Despite the evident applied orientation of the studies under consideration, they are not limited to purely engineering application of space geophysics results to the calculation of possible risks for technological systems, but also pose a number of fundamental scientific problems.

space weather, geomagnetically induced currents, power transmission lines, transformers, pipelines, railways automation, magnetospheric storms, substorms, Pi3/Ps6 pulsations
Publication text (PDF): Read Download

1. Albertson V.D. Geomagnetic disturbance effects on power systems. IEEE Transactions on Power Delivery. 1992, vol. 8, iss. 3, pp. 1206–1216. DOI: 10.1109/61.252646.

2. Anderson C.W., Lanzerotti L.J., Maclennan C.G. Outage of the L4 system and the geomagnetic distur-bances of August 4, 1972. Bell System. Technical. J. 1974, vol. 53, iss. 9, pp. 1917–1837.

3. Apatenkov S.V., Sergeev V.A., Pirjola R., Viljanen A. Evaluation of the geometry of ionospheric current systems related to rapid geomagnetic variations. Ann. Geophys. 2004, vol. 22, pp. 63–72.

4. Apatenkov S.V., Pilipenko V.A., Gordeev E.I., Viljanen A., Juusola L., Belakhovsky V.B., et al. Auroral omega bands are a significant cause of large geomagnetically induced currents. Geophys. Res. Lett. 2020, vol. 47, no. 6, e2019GL086677. DOI: 10.1029/2019GL086677.

5. Arrillaga J., Bradley D., Bodger P. Power system harmonics. 2003. DOI: 10.1002/0470871229.

6. Barannik M.B., Danilin A.N., Katkalov Yu.V., Kolobov B.B., Sakharov Ya.A., Selivanov V.N. A system for registering geomagnetically induced currents in the neutrals of power autotransformers. Instruments and Experimental Techniques. 2012, no. 1, pp. 118–123. (In Russian).

7. Bedrosian P.A., Love J.J. Mapping geoelectric fields during magnetic storms: Synthetic analysis of empirical United States impedances. Geophys. Res. Lett. 2015, vol. 42, no. 23, pp. 10160–10170. DOI: 10.1002/2015GL066636.

8. Beggan C.D. Sensitivity of geomagnetically induced currents to varying auroral electrojet and conductivity models. Earth, Planets and Space. 2015, vol. 67, no. 24. DOI: 10.1186/s40623-014-0168-9.

9. Beggan C.D., Beamish D., Richards A., Kelly G.S., Thomson A.W.P. Prediction of extreme geomagnetically induced currents in the UK high-voltage network. Space Weather. 2013, vol. 11, iss. 7, pp. 407–419. DOI: 10.1002/swe.20065.

10. Belakhovsky V.B., Pilipenko V.A., Sakharov Ya.A., Lorentzen D.A. Geomagnetic and ionospheric response to the interplanetary shock on January 24. Earth, Planets and Space. 2017, vol. 69, no. 1. DOI: 10.1186/s40623-017-0696-1.

11. Belakhovsky V.B., Pilipenko V.A., Sakharov Ya.A., Selivanov V.N. Characteristics of the variability of the geomagnetic field for studying the impact of magnetic storms and substorms on electric power systems. Izvestiya. Physics of the Solid Earth. 2018, no. 1, pp. 173–185. (In Russian).

12. Belakhovsky V., Pilipenko V., Engebretson M., Sakharov Y., Selivanov V. Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines. J. of Space Weather and Space Climate. 2019, vol. 9, no. A18. DOI: 10.1051/swsc/2019015.

13. Béland J., Small K. Space weather effects on power transmission systems: the cases of Hydro-Québec and transpower New Zealand Ltd. NATO Science Ser. II: Mathematics, Physics and Chemistry. 2005, vol. 176, pp. 287–299.

14. Belov A.V., Gaidash S.P., Kanonidi K.D., Kanonidi K.K., Kuznetsov V.D., Eroshenko E.A. Operative center of the geophysical prognosis in IZMIRAN. Ann. Geophys. 2005, vol. 23, iss. 9, pp. 3163–3170. DOI: 10.5194/angeo-23-3163-2005.

15. Bernabeu E.E. Modeling geomagnetically induced currents in the Dominion Virginia Power using extreme 100-year geoelectric field scenarios. Pt. 1. IEEE Transactions on Power Delivery. 2013, vol. 28, iss. 1, pp. 516–523.

16. Bernhardt O.I. Space weather impact on radio device operation. Solar-Terr. Phys. 2017, vol. 3, no. 3, pp. 37–53. DOI: 10.12737/stp-33201705.

17. Bolduc L. GIC observations and studies in the Hydro-Quebec power system. J. Atmos. Terr. Phys. 2002, vol. 64, iss. 16, pp. 1793–1802. DOI: 10.1016/S1364-6826(02)00128-1.

18. Bolduc L., Langlois P., Boteler D., Pirjola R. A study of geoelectromagnetic disturbances in Quebec. 1. General results. IEEE Transactions on Power Delivery. 1998, vol. 13, iss. 4, pp. 1251–1256. DOI: 10.1109/61.714492.

19. Bolduc L., Langlois P., Boteler D., Pirjola R. A study of geoelectromagnetic disturbances in Quebec, 2. Detailed analysis of a large event. IEEE Transactions on Power Delivery. 2000, vol. 15, iss. 1, pp. 272–278.

20. Bonner L.R., Schultz A. Rapid predictions of electric fields associated with geomagnetically induced currents in the presence of three-dimensional ground structure: Projection of remote magnetic observatory data through magnetotelluric impedance tensors. Space Weather. 2017, vol. 15, pp. 204–227. DOI: 10.1002/2016SW001535.

21. Boteler D.H. Distributed-source transmission line theory for electromagnetic induction studies. Proc. the 12th International Zurich Symposium and Technical Exhibition on Electromagnetic Compatibility. Zürich, Switzerland, 1997, pp. 401–408.

22. Boteler D.H. Assessment of geomagnetic hazard to power systems in Canada. Natural Hazard. 2001, vol. 23, no. 2-3, pp. 101–120.

23. Boteler D.H. A new versatile method for modelling geomagnetic induction in pipelines. Geophysical Journal International. 2013, vol. 193, pp. 98–109.

24. Boteler D.J., Cookson V.J. Telluric currents and their effects on pipelines in the Cook Strait region of New Zealand. Materials Performance. 1986, vol. 25, no. 3, pp. 27–32.

25. Boteler D.H., Pirjola R.J. The complex image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet. Geophysical Journal International. 1998, vol. 132, pp. 31–40.

26. Boteler D.H., Jansen van Beek G. August 4, 1972 revisited: A new look at the geomagnetic disturbance that caused the L4 cable system outage. Geophys. Res Lett. 1999, vol. 26, no. 5, pp. 577–580.

27. Boteler D.H., Trichtchenko L. Telluric influence on pipelines. Oil and Gas Pipelines: Integrity and Safety Handbook. 2015, pp. 275–285.

28. Boteler D.H., Pirjola R.J. Modeling geomagnetically induced currents. Space Weather. 2017, vol. 15, pp. 258–276. DOI: 10.1002/2016SW001499.

29. Boteler D.H., Pirjola R.J. Numerical calculation of geoelectric fields that affect critical infrastructure. International J. Geosciences. 2019, vol. 10, pp. 930–949.

30. Boteler D.H., Shier R.M., Watanabe T., Horita R.E. Effects of geomagnetically induced currents in the BC Hydro 500 kV system. IEEE Transactions on Power Delivery. 1989, vol. 4, no. 1, pp. 818–823.

31. Boteler D.H., Pirjola R.J., Nevalinna H. The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Adv. Space. Res. 1998, vol. 22, pp. 17–27.

32. Boteler D.H., Pirjola R., Trichtchenko L. On calculating the electric and magnetic fields produced in technological systems at the Earth’s surface by a “wide” electrojet. J. Atmos. Solar-Terr. Phys. 2000. vol. 14. pp. 1311–1315.

33. Bozoki B. The effects of GIC on protective relaying. IEEE Transactions on Power Delivery. 1996, vol. 11, pp. 725–739.

34. Brasse H., Junge A. The influence of geomagnetic variations on pipelines and an application for large-scale magnetotelluric depth sounding. J. Geophys. 1984, vol. 55, no. 1, pp. 31–36.

35. Campbell W.H. Induction of auroral zone electric currents within Alaska pipeline. Pure and Applied Geophysics. 1978, vol. 116, pp. 1143–1173.

36. Campbell W.H. Observation of electric currents in the Alaska oil pipeline resulting from auroral electrojet current sources. Geophys. J. Royal Astron. Soc. 1980, vol. 61, pp. 437–449.

37. Campbell W.H., Zimmerman J.E. Induced electric currents in the Alaska oil pipeline measured by gradient fluxgate and SQUID magnetometers. IEEE Transactions on Geoscience and Remote Sensing. 1980, vol. GE-18, no. 3, pp. 244–250. DOI: 10.1109/TGRS.1980.4307498.

38. Carter B.A., Yizengaw E., Pradipta R., Halford A.J., Norman R., Zhang K. Interplanetary shocks and the resulting geomagnetically induced currents at the equator. Geophys. Res. Lett. 2015, vol. 42, pp. 6554–6559. DOI: 10.1002/2015GL065060.

39. Chinkin V.E., Soloviev A.A., Pilipenko V.A. Identification of vortex currents in the ionosphere and estimation of their parameters based on ground magnetic data. Geomagnetism and Aeronomy. 2020, vol. 60, no. 5, pp. 559–569. DOI: 10.1134/S0016793220050035.

40. Chinkin V.E., Soloviev A.A., Pilipenko V.A., Engebretson M.J., Sakharov Ya.A. Determination of vortex current structure in the high-latitude ionosphere with associated GIC bursts from ground magnetic data. J. Atmos. Solar-Terr. Phys. 2021, vol. 212, 105514. DOI: 10.1016/j.jastp.2020.105514.

41. Cid C., Saiz E., Guerrero A., Palacios J., Cerrato Y. A Carrington-like geomagnetic storm observed in the 21st century. J. Space Weather and Space Climate. 2015, vol. 5, no. A16. DOI: 10.1051/Swsc/2015017.

42. Clilverd M.A., Rodger C.J., Brundell J.B., Dalzell M., Martin I.,Mac Manus D.H., Thomson N.R., Petersen T., Obana Y. Long-lasting geomagnetically induced currents and harmonic distortion observed in New Zealand during the 7–8 September 2017 disturbed period. Space Weather. 2018, vol. 16, iss. 6, pp. 704–717. DOI: 10.1029/2018SW001822.

43. Coles R.L., Lam H.-L. Geomagnetic forecasting in Canada: A review. Physics in Canada. 1998, vol. 54, pp. 327–331.

44. Demyanov V.V., Yasyukevich Yu.V. Space weather: Risk factors for Global Navigation Satellite Systems, Solar-Terrestrial Physics. 2021, vol. 7, 28-47, DOI: 10.12737/szf-72202104.

45. Dimmock A.P., Rosenqvist L., Hall J.O., Viljanen A., Yordanova E., Honkonen I., André M., Sjöberg E.C. The GIC and geomagnetic response over Fennoscandia to the 7–8 September 2017 geomagnetic storm. Space Weather. 2019, vol. 17, iss. 7, pp. 989–1010. DOI: 10.1029/2018SW002132.

46. Divett T., Ingham M., Beggan C.D., Richardson G.S., Rodger C.J., Thomson A.W.P., Dalzell M. Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. Space Weather. 2017, vol. 15, iss. 10, pp. 1396–1412. DOI: 10.1002/2017SW001697.

47. Divett T., Richardson G.S., Beggan C.D., Rodger C.J., Boteler D.H., Ingham M., et al. Transformer level modeling of geomagnetically induced currents in New Zealand’s South Island. Space Weather. 2018, vol. 16, iss. 6, pp. 718–735. DOI: 10.1029/2018SW001814.

48. Doumbia V., Boka K., Kouassi N., Grodji O.D.F., Amory-Mazaudier C., Menvielle M. Induction effects of geomagnetic disturbances in the geoelectric field variations at low latitudes. Ann. Geophys. 2017, vol. 35, iss. 1, pp. 39–51. DOI: 10.5194/angeo-35-39-2017.

49. Eastwood J.P., Biffis E., Hapgood M.A., Green L., Bisi M.M., Bentley R.D., et al. The economic impact of space weather: where do we stand? Risk Analysis. 2017, vol. 37, iss. 2, pp. 206–218. DOI: 10.1111/risa.12765.

50. Efimov B., Sakharov Ya., Selivanov V. Geomagnetic storms. Research impacts on the energy system of Karelia and the Kola Peninsula. News of Electrical Engineering. 2013, no. 2, p. 80.

51. Engebretson M.J., Steinmetz E.S., Posch J.L., Pilipenko V.A., Moldwin M.B., Connors M.G., et al. Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple-instrument observations. J. Geophys. Res. 2019, vol. 124, no. 9, pp. 7459–7476. DOI: 10.1029/2019JA026797.

52. Erinmez I.A., Kappenman J.G., Radasky W.A. Management of the geomagnetically induced current risks on the national grid company’s electric power transmission system. J. Atmos. Terr. Phys. 2002, vol. 64, pp. 743–756.

53. Eroshenko E.A., Belov A.V., Boteler D., Gaidash S.P., Lobkov S.L., Pirjola R., Trichtchenko L. Effects of strong geomagnetic storms on Northern railways in Russia. Adv. Space Res. 2010, vol. 46, iss. 9, pp. 1102–1110. DOI: 10.1016/ j.asr.2010.05.017.

54. Extreme Space Weather: Impacts on Engineered Systems and Infrastructure. London: Royal Academy of Engineering, 2013. 70 p. ISBN 1-903496-95-0.

55. Fernberg P.A., Samson C., Boteler D.H., Trichtchenko L., Larocca P. Earth conductivity structures and their effects on geomagnetic induction in pipelines. Ann. Geophys. 2007, vol. 25, pp. 207–218. DOI: 10.5194/angeo-25-207-2007.

56. Fiori R.A.D., Boteler D.H., Gillies D.M. Assessment of GIC risk due to geomagnetic sudden commencements and identification of the current systems responsible. Space Weather. 2014, vol. 12, pp. 76–91. DOI: 10.1002/2013SW000967.

57. Forbes K.F. Space weather and the electricity market. Space Weather. 2004, vol. 2, iss. 10, S10003.

58. Forbes K.F., St. Cyr O.C. Solar activity and economic fundamentals: Evidence from 12 geographically disparate power grids. Space Weather. 2008, vol. 6, iss. 10, S10003. DOI: 10.1029/2007SW000350.

59. Gaunt C.T. Why space weather is relevant to electrical power systems. Space Weather. 2016, vol. 14, iss. 1, pp. 2–9. DOI: 10.1002/2015SW001306.

60. Gaunt C.T., Coetzee G. Transformer failure in regions incorrectly considered to have low GIC-risks. IEEE Power Tech. 2007, Conference Paper 445, Lausanne, July, pp. 807–812.

61. Girgis R., Vedante K. Impact of GICs on power transformers: overheating is not the real issue. Electrification Magazine, IEEE. 2015, vol. 3, pp. 8–12. DOI: 10.1109/MELE.2015.2480355.

62. Gleisner H., Lundstedt H. A neural network-based local model for prediction of geomagnetic disturbances. J. Geophys. Res. 2001, vol. 106, pp. 8425–8434.

63. Guillon S., Toner P., Gibson L., Boteler D.A. Colorful blackout: the havoc caused by auroral electrojet generated magnetic field variations in 1989. IEEE Power and Energy. 2016, pp. 59–71. DOI: 10.1109/MPE.2016.2591760.

64. Gummow R., Eng P. GIC effects on pipeline corrosion and corrosion control systems. J. Atmos. Solar-Terr. Phys. 2002, vol. 64, iss. 16, pp. 1755–1764. DOI: 10.1016/s1364-6826(02)00125-6.

65. Gurevich V.I. The problem of electromagnetic influences on microprocessor-based relay protection devices. Components and Technologies. 2010, pp. 46–51. (In Russian).

66. Gurevich V.I. Vulnerabilities of Microprocessor-Based Protection Relays: Problems and Solutions. Moscow, Infra-Engineering, 2014. 256 p. (In Russian).

67. Gusev Yu.P., Lkhamdondog A., Monakov Yu.V., Yagova N.V., Pilipenko V.A. Assessment of the impact of geomagnetically induced currents on the starting modes of power transformers. Electric Stations. 2020, no. 2. pp. 54–59.

68. Hakkinen L., Pirjola R. Calculation of electric and magnetic fields due to an electrojet current system above a layered Earth. Geophysica. 1986, vol. 22, pp. 31–44.

69. Hapgood M. A. Toward a scientific understanding of the risk from extreme space weather. Adv. Space Res. 2011, vol. 47, pp. 2059–2072.

70. Hapgood M. Prepare for the coming space weather storm. Nature. 2012, vol. 484, pp. 311–313.

71. Hapgood M. The great storm of May 1921: An exemplar of a dangerous space weather event. Space Weather. 2019, vol. 17, pp. 950–975. DOI: 10.1029/2019SW002195.

72. Hejda P., Bochnicek J. Geomagnetically induced pipe-to-soil voltages in the Czech oil pipelines during October–November 2003. Ann. Geophys. 2005, vol. 23, pp. 3089–3093.

73. Henriksen J.F., Elvik R., Gransen L. Telluric currents corrosion on buried pipelines. Proc. the 8th Scandinavian Corrosion Congress. Helsinki, Finland, 1978, vol. 2, pp. 167–176.

74. Huttunen K.E., Kilpua S.P., Pulkkinen A., Viljanen A., Tanskanen E. Solar wind drivers of large geomagnetically induced currents during the solar cycle 23. Space Weather. 2008, vol. 6, iss. 10, S10002. DOI: 10.1029/2007SW000374.

75. Ingham M., Rodger C.J. Telluric field variations as drivers of variations in cathodic protection potential on a natural gas pipeline in New Zealand. Space Weather. 2018, vol. 16, pp. 1396–1409. DOI: 10.1029/2018SW001985.

76. Ingham M., Rodger C.J., Divett T., Dalzell M., Petersen T. Assessment of GIC based on transfer function analysis. Space Weather. 2017, vol. 15, iss. 12, pp. 1615–1627. DOI: 10.1002/ 2017SW001707.

77. Ivannikova E., Kruglyakov M., Kuvshinov A., Rastätter L., Pulkkinen A. Regional 3D modeling of ground electromagnetic field due to realistic geomagnetic disturbances. Space Weather. 2018, vol. 16, iss. 5, pp. 476–500. DOI: 10.1002/2017SW001793.

78. Ivonin A.A. Influence of the Earth's geomagnetic field on corrosion protection of MGP of Gazprom Transgaz Ukhta. Corrosion of the Neftegaz Territories. 2015, no. 1, pp. 88–89. (In Russian).

79. Jonas S., McCarron E. Recent U.S. policy developments addressing the effects of geomagnetically induced currents. Space Weather. 2015, vol. 13, iss. 11, pp. 730–733. DOI: 10.1002/2015SW001310.

80. Kappenman J.G. Geomagnetic storms and their impact on power systems. IEEE Power Engineering Review. 1996, pp. 5–8.

81. Kappenman J. Systemic failure on a grand scale: The 14 August 2003 North American blackout. Space Weather. 2003, vol. 1, iss. 2. DOI: 10.1029/2003SW000027.

82. Kappenman J.G. An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun–Earth connection events of 29–31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather. 2005, vol. 3, iss.8, SO8C01. DOI: 10.1029/2004SW000128.

83. Kappenman J.G. Geomagnetic storms and their impact on the US power grid. Meta-R-319 Report, 2010.

84. Kappenman J.G., Albertson V.D., Mohan N. Current transformer and relay performance in the presence of geomagnetically induced currents. IEEE Transactions on Power Systems. 1981, vol. PAS-100, iss. 3, pp. 1078–1088.

85. Kartashev I.I. Din-Duc N. Influence of the characteristics of magnetization of a transformer on the spectrum of higher harmonics. Vestnik MEI. 2007, pp. 56–63. (In Russian).

86. Kasinsky V.V., Ptitsyna N.G., Lyakhov N.N., Tyasto M.I., Villoresi J., Yuchi N. Influence of geomagnetic disturbances on the operation of railway automation and telemechanics systems. Geomagnetism and Aeronomy. 2007, vol. 47, no. 5, pp. 714–718. (In Russian).

87. Kataoka R., Pulkkinen A. Geomagnetically induced currents during intense storms driven by coronal mass ejections and corotating regions. J. Geophys. Res. 2008, vol. 113, iss. A3, A03S12. DOI: 10.1029/2007JA012487.

88. Kelbert A., Balch C.C., Pulkkinen A., Egbert G.D., Love J.J., Rigler J.E., Fujii I. Methodo-logy for time‐domain estimation of storm time geoelectric fields using the 3D magnetotelluric response tensors. Space Weather. 2017, vol. 15, iss. 7, pp. 874–894. DOI: 10.1002/2017SW001594.

89. Kelly G.S., Viljanen A., Beggan C.D., Thomson A.W.P. Understanding GIC in the UK and French high‐voltage transmission systems during severe magnetic storms. Space Weather. 2017, vol. 15, pp. 99–114. DOI: 10.1002/2016SW001469.

90. Khanal K., Adhikari B., Chapagain N.P., Bhattarai B. HILDCAA-related GIC and possible corrosion hazard in underground pipelines: A comparison based on wavelet transform. Space Weather. 2019, vol. 17, iss. 2, pp. 238–251. DOI: 10.1029/2018SW001879.

91. Knipp D. J. Synthesis of geomagnetically induced currents: Commentary and research. Space Weather. 2015, vol. 13, iss. 11, pp. 727–729. DOI: 10.1002/2015SW001317.

92. Kobelev A.V., Zybin A.A. Modern problems of higher harmonics in urban power supply systems. Bulletin of TSTU. 2011, vol. 17, no. 1, pp. 181–191.

93. Korja T., Zhamaletdinov A.A., Engels M., Kovtun A.A. Crustal conductivity in Fennoscandia – a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth, Planets and Space. 2002, vol. 54, iss. 5, pp. 535–558. DOI: 10.1186/BF03353044.

94. Kozyreva O.V., Pilipenko V.A., Belakhovsky V.V., Sakharov Ya.A. Ground geomagnetic field and GIC response to March 17, 2015 storm. Earth, Planets and Space. 2018, vol. 70, no. 157. DOI: 10.1186/s40623-018-0933-2.

95. Kozyreva O., Pilipenko V., Sokolova E., Epishkin D. Geomagnetic and telluric field variability as a driver of geo-magnetically induced currents. Springer Proc. in Earth and Environmental Sciences “Problems of Geocosmos-2018”. Springer Nature Switzerland, AG 2019, pp. 297–307. DOI: 10.1007/978-3-030-21788-4_26.

96. Kozyreva O., Pilipenko V., Krasnoperov R., Baddeley L.J. Fine structure of substorm and geomagnetically induced currents. Ann. Geophys. 2020, vol. 63, no. 2, GM219. DOI: 10.4401/ ag-8198.

97. Krausmann E., Andersson E., Russell T., Murtagh W. Space Weather and Rail: Findings and Outlook. Joint Research Centre Report. JRC98155. Luxembourg, Publications Office of the European Union, 2015. DOI: 10.2788/211456.

98. Kuvshinov A. 3-D global induction in the oceans and solid Earth: Recent progress in modeling magnetic and electric fields from sources of magnetospheric, ionospheric, and oceanic origin. Survey in Geophysics. 2008, vol. 29, iss. 2, pp. 139–186. DOI: 10.1007/s10712-008-9045-z.

99. Kuvshinov A., Olsen N. A global model of mantle conductivity derived from 5 years of CHAMP, Orsted, and SAC-C magnetic data. Geophys. Res. Lett. 2006, vol. 33, iss. 18. L18301. DOI: 10.1029/2006GL027083.

100. Langlois P., Bolduc L., Chouteau M.C. Probability of occurrence of geomagnetic storms based on a study of the distribution of the electric field amplitudes measured in Abitibi, Québec, in 1993–1994. J. Geomagnetism and Geoelectricity. 1996, vol. 48, pp. 1033–1041.

101. Lanzerotti L.J. Geomagnetic influences on man-made systems. J. Atmos. Terr. Phys. 1979, vol. 41, pp. 787–796.

102. Lanzerotti L.J. Geomagnetic induction effects in ground-based systems. Space Sci. Rev. 1983, vol. 34, pp. 347–356. DOI: 10.1007/BF00175289.

103. Lanzerotti L.J. Space weather effects on technologies. Space Weather. 2001, vol. 125, iss. 11. DOI: 10.1029/GM125p0011.

104. Lanzerotti L.J., Medford L.V., MacLennan C.G., Thomson D.J. Studies of large-scale Earth potential across oceanic distances. ATT Technical Journal. 1995, pp. 73–84.

105. Lehtinen M., Pirjola R. Currents produced in earthed conductor networks by geomagnetically induced electric fields. Ann. Geophys. 1985, vol. 3, pp. 479–484.

106. Liu C.-M., Liu L.-G., Pirjola R., Wang Z.-Z. Calculation of geomagnetically induced currents in mid- to low-latitude power grids based on the plane wave method: A preliminary case study. Space Weather. 2009, vol. 7, iss. 4. S04005. DOI: 10.1029/2008SW000439.

107. Liu L., Ge X., Zong W., Zhou Y., Liu M. Analysis of the monitoring data of geomagnetic storm interference in the electrification system of a high-speed railway. Space Weather. 2016, vol. 14, iss. 10, pp. 754–763. DOI: 10.1002/2016SW001411.

108. Lotz S.I., Danskin D.W. Extreme value analysis of induced geoelectric field in South Africa. Space Weather. 2017, vol. 15, iss. 10, pp. 1347–1356.

109. Love J.J. Magnetic monitoring of Earth and space. Phys. Today. 2008, vol. 61, iss. 2, pp. 31–37. DOI: 10.1063/1.2883907.

110. Love J.J. Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms. Geophys. Res. Lett. 2012, vol. 39, iss. 10, L10301. DOI: 10.1029/2012GL051431.

111. Love J.J., Swidinsky A. Time causal operational estimation of electric fields induced in the Earth's lithosphere during magnetic storms. Geophys. Res. Lett. 2014, vol. 41, pp. 2266–2274. DOI: 10.1002/2014GL059568.

112. Love J.J., Cosson P., Pulkkinen A. Global statistical maps of extreme-event magnetic observatory 1 min first differences in horizontal intensity. Geophys. Res. Lett. 2016, vol. 43, iss. 9, pp. 4126–4135. DOI: 10.1002/2016GL068664.

113. Love J.J., Bedrosian P.A., Schultz A. Down to Earth with an electric hazard from space. Space Weather. 2017, vol. 15, iss. 5, pp. 658–662.

114. Love J.J., Lucas G.M., Kelbert A., Bedrosian P.A. Geoelectric hazard maps for the mid-Atlantic United States: 100 year extreme values and the 1989 magnetic storm. Geophys. Res. Lett. 2018, vol. 44. DOI: 10.1002/2017GL076042.

115. Love J. J., Hayakawa H., Cliver E. W. Intensity and impact of the New York Railroad superstorm of May 1921. Space Weather. 2019, vol. 17, pp. 1281–1292. DOI: 10.1029/2019SW002250.

116. Lucas G.M., Love J.J., Kelbert A. Calculation of voltages in electric geomagnetic storms: an investigation using realistic power transmission lines during historic Earth impedances. Space Weather. 2018, vol. 16, iss. 2, pp. 185–195. DOI: 10.1002/2017SW001779.

117. Lundstedt H. Solar caused potential in gas-pipelines in southern Sweden. Proc. Solar-Terrestrial Predictions Workshop (STPW-IV), Ottava, Canada, 1992, vol. I, pp. 233–237.

118. Lundstedt H. Progress in space weather predictions and applications. Adv. Space Res. 2005, vol. 36, pp. 2516–2523.

119. Lundstedt H. The sun, space weather and GIC effects in Sweden. Adv. Space Res. 2006, vol. 37, pp. 1182–1191. DOI: 10.1016/j.asr.2005.10.023.

120. Mäkinen T. Geomagnetically Induced Currents in the Finnish Power Transmission System. Finnish Meteorological Institute, Geophys. Publ., Helsinki, Finland, 1993, no. 32, 101 p.

121. Marin J., Pilipenko V., Kozyreva O., Stepanova M., Engebretson M., Vega P., Zesta E. Global Rs5 pulsations during strong magnetic storms: excitation mechanisms and equatorward expansion. Ann. Geophys. 2014, vol. 32, iss. 4, pp. 319–331. DOI: 10.5194/angeo-32-319-2014.

122. Marshalko E., Kruglyakov M., Kuvshinov A., Murphy B.S., Rastätter L., Ngwira C., Pulkkinen A. Exploring the influence of lateral conductivity contrasts on the storm time behavior of the ground electric field in the eastern United States. Space Weather. 2020, vol. 18, iss. 3, e2019SW002216. DOI: 10.1029/2019SW002216.

123. Marshall R.A., Waters C.L., Sciffer M.D. Spectral analysis of pipe-to-soil potentials with variations of the Earth’s magnetic field in the Australian region. Space Weather. 2010, vol. 8, iss. 5, S05002. DOI: 10.1029/2009SW000553.

124. Marshall R.A., Dalzell M., Waters C.L., Goldthorpe P., Smith E.A. Geomagnetically induced currents in the New Zealand power network. Space Weather. 2012, vol. 10, iss. 8, S08003. DOI: 10.1029/2012 SW000806.

125. Marshall R.A., Kelly A., Van der Walt T., Honecker A., Ong C., Mikkelsen D., et al. Modelling geomagnetic induced currents in Australian power networks. Space Weather. 2017, vol. 15, iss. 7. DOI: 10.1002/2017SW001613.

126. Marti L., Rezaei-Zare A., Narang A. Simulation of transformer hotspot heating due to geomagnetically induced currents. IEEE Transaction on Power Delivery. 2013, vol. 28, iss. 1, pp. 320–327.

127. Marti L., Yiu C. Real-Time Management of Geomagnetic Disturbances: Hydro One’s eXtreme Space Weather control room tools. IEEE Electrification Magazine. 2015. Vol. 3, no. 4. P. 46–51. DOI: 10.1109/MELE.2015.2480637.

128. Martin B.A. Telluric effects on a buried pipeline. Corrosion. 1993, vol. 49, iss. 4, pp. 343–350.

129. McKay A.J., Whaler K.A. The electric field in northern England and southern Scotland: Implications for geomagnetically induced currents. Geophysical Journal International. 2006, vol. 167, pp. 613–625.

130. Medford L.V., Meloni A., Lanzerotti L.J., Gregori G.P. Geomagnetic induction on a transatlantic communication cable. Nature. 1981, vol. 290, pp. 392–393.

131. Meloni A., Lanzerotti L.J., Gregori G.P. Induction of currents in long submarine cables by natural phenomena. Rev. Geophys. Space Phys. 1983, vol. 21, pp. 795–803.

132. Messerotti M., Zuccarello F., Guglielmino S., Bothmer V., Lilensten J., Noci G., et al. Solar weather modelling and predicting. Space Sci. Rev. 2009, vol. 147, pp. 121–185. DOI: 10.1007/s11214-009-9574-x.

133. Molinski T.S. Why utilities respect geomagnetically induced currents. J. Atmos. Terr. Phys. 2002, vol. 64, pp. 1765–1778.

134. Mullayarov V.A., Kozlov V.I., Grigoriev Yu.M., Romashchenko Yu.A. Current induced in a gas pipeline from a large magnetic disturbance 01.21.05. Science and Education. 2006, no. 1, pp. 53–55.

135. Myllys M., Viljanen A., Rui Ø.A., Ohnstad T.M. Geomagnetically induced currents in Norway: the northernmost high-voltage power grid in the world. J. Space Weather and Space Climate. 2014, vol. 4, no. A10. DOI: 10.1051/swsc/2014007.

136. National Research Council. 2008. Severe Space Weather Events: Understanding Societal and Economic Impacts: A Workshop Report. Washington, DC: The National Academies Press. DOI: 10.17226/12507.

137. Newell P.T., Liou K., Zhang Y., Sotirelis T., Paxton L.J., Mitchell E.J. OVATION Prime- 2013: Extension of auroral precipitation model to higher disturbance levels, Space Weather. 2014. Vol. 12, P. 368–379. DOI: 10.1002/2014sw001056.

138. Ngwira C.M., Pulkkinen A., McKinnell L.-A., Cilliers P.J. Improved modeling of geomagnetically induced currents in the South African power network. Space Weather. 2008, vol. 40, iss. 11, S11004. DOI: 10.1029/2008SW000408.

139. Ngwira C.M., Pulkkinen A., Wilder F.D., Crowley G. Extended study of extreme geoelectric field event scenarios for geomagnetically induced current applications. Space Weather. 2013a, vol. 11, pp. 121–131. DOI: 10.1002/swe.20021.

140. Ngwira C.M., Pulkkinen A., Mays L.M., Kuznetsova M.M., Galvin A.B., Simunac K., et al. Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was Earth directed? Space Weather. 2013b, vol. 11, pp. 671–679. DOI: 10.1002/2013SW000990.

141. Ngwira C.M., Pulkkinen A., Kuznetsova M.M., Glocer A. Modeling extreme “Carrington-type” space weather events using three-dimensional MHD code simulations. J. Geophys. Res.: Space Phys. 2014, vol. 119, pp. 4456–4474. DOI: 10.1002/2013JA019661.

142. Ngwira C.M., Pulkkinen A.A., Bernabeu E., Eichner J., Viljanen A., Crowley G. Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophys. Res. Lett. 2015, vol. 42, iss. 17, pp. 6916–6921. DOI: 10.1002/2015GL065061.

143. Ngwira C.M., Sibeck D., Silveira M.D., Georgiou M., Weygand J.M., Nishimura Yu., Hampton D. A study of intense local dB/dt variations during two geomagnetic storms. Space Weather. 2018, vol. 16, iss. 6, pp. 676–693. DOI: 10.1029/2018SW001911.

144. Nikitina L., Trichtchenko L., Boteler D.H. Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather. 2016, vol. 14, pp. 481–494. DOI: 10.1002/2016SW001386.

145. Oliveira D.M., Ngwira C.M Geomagnetically Induced Currents: Principles. Brazilian J. Phys. 2017, vol. 47, no. 5, pp. 552–560. DOI: 10.1007/s13538-017-0523-y.

146. Oughton E.J., Skelton A., Horne R.B., Thomson A.W.P., Gaunt C.T. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure. Space Weather. 2017, vol. 15, pp. 65–83. DOI: 10.1002/2016SW001491.

147. Overbye T.J., Shetye K.S., Hutchins T.R., Qiu Q., Weber J.D. Power grid sensitivity analysis of geomagnetically induced currents. IEEE Transactions on Power Systems. 2013, vol. 28. pp. 4821–4828. DOI: 10.1109/TPWRS.2013.2274624.

148. Panyushkin G.N. Kinetics of geomagnetic influence on underground corrosion of main pipelines. Pipeline Transport. 2014, no. 3-4, pp. 34–35.

149. Piccinelli R., Krausmann E. Space Weather and Power Grids — A Vulnerability assessment. Report to European Union, Luxembourg, 2014, 53 p. DOI: 10.2788/20848.

150. Pilipenko V.A., Belakhovsky V.B., Sakharov Ya.A., Selivanov V.N. Irregular geomagnetic disturbances embedded into substorms as a cause of induced currents in electric power lines. Proc. XLI Annual Seminar “Physics of Auroral Phenomena”. Apatity, 2018a, pp. 26–29.

151. Pilipenko V.A., Bravo M., Romanova N.V., Kozyreva O.V., Samsonov S.N., Sakharov Ya.A. Geomagnetic and ionospheric responses to the interplanetary shock wave of March 17, 2015. Izvestiya. Physics of the Solid Earth. 2018b, no. 5, pp. 61–80. DOI: 10.1134/S0002333718050125. (In Russian).

152. Pirjola R. Electromagnetic induction in the Earth by a plane wave or by fields of line currents harmonic in time and space. Geophysica. 1982, vol. 18, pp. 1–161.

153. Pirjola R. On currents induced in power transmission systems during geomagnetic variations. IEEE Transactions on Power Systems. 1985a, vol. 104, pp. 2825–2831.

154. Pirjola R. Effect of series capacitors, neutral point reactor, autotransformers and overhead shield wires on geomagnetically induced currents (GIC) in electric power transmission systems. Ann. Geophys. 1985b, pp. 479–484.

155. Pirjola R. Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems. Survey Geophysics. 2002, vol. 23, pp. 71–90.

156. Pirjola R., Viljanen A., Complex image method for calculating electric and magnetic fields produced by an auroral electrojet of finite length. Ann. Geophys. 1998, vol. 16, pp. 1434–1444. DOI: 10.1007/s00585-998-1434-6.

157. Pirjola R., Pulkkinen A., Viljanen A. Studies of space weather effects on the Finnish natural gas pipeline and on the Finnish high-voltage power system. Adv. Space Res. 2003, vol. 31, iss. 4, pp. 795–805.

158. Pirjola R., Kauristie K., Lappalainen H., Viljanen A., Pulkkinen A. Space weather risk. Space Weather. 2005, vol. 3, iss. 2, S02A02. DOI: 10.1029/ 2004SW000112.

159. Pisarenko V.F., Rodkin M.V. Heavy-Tailed Distributions: Applications to Catastrophe Analysis. Moscow, GEOS, 2007, 242 p.

160. Ptitsyna N.G., Tyasto M.I., Kassinskii V.V., Lyakhov N.N. Do natural magnetic fields disturb railway telemetry? Proc. 7th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology. St. Petersburg, 2007. pp. 281–290. DOI: 10.1109/EMCECO.2007.4371713.

161. Ptitsyna N.G., Kasinsky V.V., Villoresi G., Lyahov N.N., Dormande L.I., Iuccic N. Geomagnetic effects on mid-latitude railways: A statistical study of anomalies in the operation of signaling and train control equipment on the East-Siberian Railway. Adv. Space Res. 2008, vol. 42, iss. 9, pp. 1510–1514. DOI: 10.1016/j.asr.2007.10.015.

162. Pulkkinen A., Pirjola R., Boteler D., Viljanen A., Yegorov I. Modeling of space weather effects on pipelines. J. Applied Geophysics. 2001a, vol. 48, iss. 4, pp. 233–256. DOI: 10.1016/S0926-9851(01)00109-4.

163. Pulkkinen A., Viljanen A., Pajunpaa K., Pirjola R. Recordings and occurrence of geomagnetically induced currents in the Finnish natural gas pipeline network. J. Applied Geophysics. 2001b, vol. 48, pp. 219–231.

164. Pulkkinen A., Thomson A., Clarke E., McKay A. April 2000 geomagnetic storm: ionospheric drivers of large geomagnetically induced currents. Ann. Geophys. 2003, vol. 21, pp. 709–717.

165. Pulkkinen A., Lindal S., Viljanen A., Pirjola R. 2005 Geomagnetic storm of 29–31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system. Space Weather. 2005, vol. 3, iss. 8, S08C03. DOI: 10.1029/2004SW000123.

166. Pulkkinen A., Klimas A., Vassiliadis D., Uritsky V., Tanskanen E. Spatiotemporal scaling properties of the ground geomagnetic field variations. J. Geophys. Res.: Space Physics. 2006, vol. 111, iss. A3, A03305. DOI: 10.1029/2005JA011294.

167. Pulkkinen A., Hesse M., Kuznetsova M., Rastätter L. First-principles modeling of geomagnetically induced electromagnetic fields and currents from upstream solar wind to the surface of the Earth. Ann. Geophys. 2007, vol. 25, pp. 881–893.

168. Pulkkinen A., Pirjola R., Viljanen A. Statistics of extreme geomagnetically induced current events. Space Weather. 2008, vol. 6, iss. 7, S07001. DOI: 10.1029/2008SW000388.

169. Pulkkinen A., Hesse M., Habib S., Van der Zel L., Damsky B., Policelli F., et al. Solar shield: Forecasting and mitigating space weather effects on high-voltage power transmission systems. Natural Hazards. 2010, vol. 53, pp. 333–345. DOI: 10.1007/s11069-009-9432-x.

170. Pulkkinen A.A., Bernabeu E., Eichner J., Beggan C., Thomson A.W.P. Generation of 100-year geomagnetically induced current scenarios. Space Weather. 2012, vol. 10, iss. 4, S04003. DOI: 10.1029/2011SW000750.

171. Pulkkinen A., Rastätter L., Kuznetsova M., Singer H., Balch C., Weimer D., et al. Communitywide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather. 2013, vol. 11, iss. 6, pp. 369–385. DOI: 10.1002/swe.20056.

172. Pulkkinen A., Bernabeu E., Eichner J., Viljanen A., Ngwira C. Regional-scale high-latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth, Planets and Space. 2015, vol. 67, no. 93. DOI: 10.1186/s40623-015-0255-6.

173. Pulkkinen A., Bernabeu E., Thomson A., Viljanen A., Pirjola R., Boteler D., et al. Geomagnetically induced currents: science, engineering and applications readiness. Space Weather. 2017, vol. 15, iss. 7, pp. 828–856. DOI: 10.1002/2016SW001501.

174. Püthe C., Kuvshinov A. Towards quantitative assessment of the hazard from space weather. Global 3D modellings of the electric field induced by a realistic geomagnetic storm. Earth, Planets and Space. 2013, vol. 65, pp. 1017.

175. Qiu Q., Fleeman J.A., Ball D.R. Geomagnetic disturbance. A comprehensive approach by American Electric Power to address the impacts. IEEE Electrification Magazine. 2015, vol. 3, no. 4, pp. 22–33.

176. Riley P. On the probability of occurrence of extreme space weather events. Space Weather. 2012, vol. 10, iss. 2, S02012. DOI: 10.1029/2011SW000734.

177. Rodger C.J., Mac Manus D.H., Dalzell M., Thomson A.W.P., Clarke E., Petersen T., et al. Long-term geomagnetically induced current observations from New Zealand: Peak current estimates for extreme geomagnetic storms. Space Weather. 2017, vol. 15, iss. 11, pp. 1447–1460. DOI: 10.1002/2017SW001691.

178. Sackinger W.M. The Relationship of Telluric Currents to the Corrosion of Warm Arctic Pipelines. Society of Petroleum Engineer Publ. (SPE), 22099, 1991, pp. 361–366.

179. Sakharov Ya.A, Danilin A.N., Ostafiychuk R.M. Registration of GIC in power systems of the Kola Peninsula. Proc. 7th Symposium on Electromagnetic Compatibility and Electromagnetic Ecology. St. Petersburg: 2007, pp. 291–293.

180. Sakharov Ya.A., Kudryashova N.V., Danilin A.N., Kokin S.M., Shabalin A.N., Pirjola R. Influence of geomagnetic disturbances on the operation of railway automation. Vestnik MIIT. 2009, iss. 21, pp. 107–111. (In Russian).

181. Sakharov Ya.A., Selivanov V.N., Bilin V.A., Nikolaev V.G. Extreme values of geomagnetically induced currents in the regional power system. Proc. XLII Annual Seminar “Physics of Auroral Phenomena”. Apatity, 2019, pp. 53–56. DOI: 10.25702/KSC.2588-0039.2019.42.53-56.

182. Sakharov Ya.A., Yagova N.V., Pilipenko V.A. Geo-magnetic pulsations Pc5/Pi3 and geomagnetically induced currents. Bulletin of the Russian Academy of Sciences: Physics. 2021, vol. 85, no. 3, pp. 445–450. DOI: 10.31857/s0367676521030236. (In Russian).

183. Schrijver C.J., Dobbins R., Murtagh W., Petrinec S.M. Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment. Space Weather. 2014, vol. 12, iss. 7, pp. 487–498. DOI: 10.1002/2014SW001066.

184. Schrijver C.S., Kauristie K., Aylward A.D., Denardini C.M., Gibson S.E., Glover A., et al. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv. Space Res. 2015, vol. 55, no. 12, pp. 2745–2807. DOI: 10.1016/ j.asr.2015.03.023.

185. Schultz A. EMScope: A continental scale magneto-telluric observatory and data discovery resource. Data Sci. J. 2009, vol. 8, pp. IGY6–IGY20.

186. Schulte in den Baumen H., Moran D., Lenzen M., Cairns I., Steenge A. How severe space weather can disrupt global supply chains? Natural Hazards and Earth System Sciences. 2014, vol. 14, iss. 10, pp. 2749–2759. DOI: 10.5194/nhess-14-2749-2014.

187. Selivanov V.N., Barannik M.B., Danilin A.N., Kolobov V.V., Sakharov Ya.A. Study of the influence of geomagnetic disturbances on the harmonic composition of currents in neutrals of autotransformers. Proc. KSC RAS: Energetika. Apatity: Kola Scientific Center of the Russian Academy of Sciences, 2012, iss. 4, pp. 60–68. (In Russian).

188. Selivanov V.N., Barannik M.B., Bilin V.A., Efimov B.V., Kolobov V.V., Sakharov Ya.A. Investigation of the harmonic composition of the current in the neutral of a transformer during periods of geomagnetic disturbances. Proc. KSC RAS: Energetika. Apatity: Kola Scientific Center of the Russian Academy of Sciences. 2017, no. 1-14 (8), pp. 43–52. (In Russian).

189. Selivanov V.N., Danilin A.N., Kolobov V.V., Sakharov Ya.A., Barannik M.B. Results of long-term registration of currents in neutrals of power transformers. Trans. KSC RAS: Energetika. Apatity: Kola Scientific Center of the Russian Academy of Sciences, 2010. Iss. 1, pp. 84–90. (In Russian).

190. Sivokon V.P., Serovetnikov A.S. Geomagnetically-induced currents in the electrical network of Kamchatka. Electro. 2013, pp. 19–22. (In Russian).

191. Sivokon V.P., Serovetnikov A.S. Variations in the current spectrum of a transformer exposed to geomagnetically induced currents. Electro. 2015, no. 1, pp. 18–21. (In Russian).

192. Sivokon V.P., Serovetnikov A.S., Pisarev A.V. Higher harmonics as indicators of geomagnetically induced currents. Electro. 2011, pp. 44–51. (In Russian).

193. Sokolova O., Korovkin N., Hayakawa M. Geomagnetic Disturbances Impacts on Power Systems: Risk Analysis and Mitigation Strategies. CRC Press, 2021, 268 p. DOI: 10.1201/9781003134152.

194. Space Storms and Space Weather Hazards. Ed. I.A. Daglis. NATO Sci. Ser., Kluwer, 2000. DOI: 10.1007/978-94-010-0983-6.

195. Space Weather. Geophys. Monogr. Ser. Ed. Song P., H.J. Singer, G.L. Siscoe, AGU, Washington, D.C. 2001. vol. 125. pp. 353–358. DOI: 10.1029/GM125p0353.

196. Space Weather — Research Towards Applications in Europe. Ed. J. Lilensten. Astrophysics and Space Science Library, Springer. 2007, vol. 344, pp. 311–326. DOI: 10.1007/1-4020-5446-7.

197. Stauning P. Power grid disturbances and polar cap index during geomagnetic storms. J. Space Weather Space Climate. 2013, vol. 3, no. A22. DOI: 10.1051/swsc/2013044.

198. Sushko V.A., Kosykh D.A. Geomagnetic storms. Threat to the national security of Russia. News of Electrical Engineering. 2013, no. 4, pp. 25–28.

199. Thomson A.W.P., McKay A.J., Clarke E., Reay S.J. Surface electric fields Power grid during the 30 October 2003 geomagnetic sand geomagnetically induced currents in the Scottish storm. Space Weather. 2005, vol. 3, iss. 11, S11002. DOI: 10.1029/ 2005SW000156.

200. Thomson A.W.P., McKay A.J., Viljanen A. A review of progress in modelling of induced geoelectric and geomagnetic fields with special regard to induced currents. Acta Geophys. 2009, vol. 57. pp. 209–219.

201. Thomson A.W.P., Gaunt C.T., Cilliers P., Wild J.A., Opperman B., L.-A. McKinnell, et al. Present day challenges in understanding the geomagnetic hazard to national power grids. Adv. Space Res. 2010, vol. 45, iss. 10, pp. 1182–1190. DOI: 10.1016/j.asr.2009.11.023.

202. Thomson A.W.P., Dawson E.B., Reay S.J. Quantifying extreme behavior in geomagnetic activity. Space Weather. 2011, vol. 9, iss. 10, S10001. DOI: 10.1029/2011SW000696.

203. Torta J.M., Marsal S., Quintana M. Assessing the hazard from geomagnetically induced currents to the entire high-voltage power network in Spain. Earth, Planets and Space. 2014, vol. 66, no. 87. DOI: 10.1186/1880-5981-66-87.

204. Tóth G., Sokolov I.V., Gombosi T.I., Chesney D.R., Clauer C.R., De Zeeuw D.L., et al. Space weather modeling framework: A new tool for the space science community. J. Geophys. Res. 2005, vol. 110, iss. A12, A12226. DOI: 10.1029/2005JA011126.

205. Tozzi R., de Michelis P., Coco I., Giannattasio F. A preliminary risk assessment of geomagnetically induced currents over the Italian territory. Space Weather. 2019, vol. 17, iss. 1, pp. 46–58. DOI: 10.1029/2018SW002065.

206. Trivedi N.B., Vitorello Í., Kabata W., Dutra S.L.G., Padilha A.L., Bologna M.S., de Pádua M.B., et al. Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: A case study. Space Weather. 2007, vol. 5,iss.4, S04004. DOI: 10.1029/2006SW000282.

207. Trishchenko L.D. Geomagnetic Disturbances and Power Supply and Wire Communication Systems. Plasma Heliophysics. Moscow: Fizmatlit, 2008, vol. 2, pp. 213–29. (In Russian).

208. Trichtchenko L., Boteler D.H. Modelling of geomagnetic induction in pipelines. Ann. Geophys. 2002, vol. 20, pp. 1063–1072. DOI: 10.5194/angeo-20-1063-2002.

209. Trichtchenko L.D., Boteler D. Modeling geomagnetically induced currents using geomagnetic indices and data. IEEE Transactions on Plasma Science. 2004, vol. 32, pp. 1459–1467. DOI: 10.1109/TPS.2004.830993.

210. Troshichev O., Janzhura A. Space Weather Monitoring by Ground-Based Means: PC Index. Springer, 2012, 288 p. DOI: 10.1007/978-3-642-16803-1.

211. Tsagouri I., Belehaki A., Bergeot N., Cid C., Delouille V., Egorova T., et al. Progress in space weather modeling in an operational environment. J. Space Weather Space Climate. 2013, vol. 3, no. A17. DOI: 10.1051/swsc/2013037.

212. Tsubouchi K., Omura Y. Long‐term occurrence probabilities of intense geomagnetic storm events. Space Weather. 2007, vol. 5, iss. 12, S12003. DOI: 10.1029/2007SW000329.

213. Uspensky M.I. Basic concepts and ways of influence of geomagnetic storms on the electric power system. Izvestia of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences. 2017, no. 1, pp. 72–81. (In Russian).

214. Vakhnina V.V. Modeling the Operating Modes of Power Transformers of Power Supply Systems During Geomagnetic Storms. Togliatti: TSU Publ. House, 2012, 103 p. (In Russian).

215. Vakhnina V.V., Kretov D.A. Mathematical model of a power transformer under the influence of magnetic storms on power supply systems. Vector of Science of Togliatti State University. 2012a, no. 4, pp. 141–144. (In Russian).

216. Vakhnina V.V., Kretov D.A. Determination of permissible levels of geomagnetically induced currents to ensure the operability of power transformers during geomagnetic storms. Internet-Journal “Science”. 2012b, no. 4, pp. 1–7. (In Russian).

217. Vakhnina V.V., Kuznetsov V.A. Development of a monitoring system for geomagnetically induced currents in neutrals of power transformers during geomagnetic storms. Vector of Science of Togliatti State University. 2013, no. 2, pp. 108–111. (In Russian).

218. Vakhnina V.V., Chernenko A.N., Kuznetsov V.A. Influence of geomagnetically induced currents on saturation of the magnetic system of power transformers. Vector of Science of Togliatti State University. 2012, no. 3, pp. 65–69. (In Russian).

219. Vakhnina VV, Kuvshinov AA, Shapovalov VA, Selemir V.D., Karelin V.I. Mechanisms of the Impact of Quasi-DC Geomagnetically Induced Currents on Electrical Networks. Moscow, Infra-Engineering, 2018, 256 p. (In Russian).

220. Veeramany A., Unwin S.D., Coles G.A., Dagle J.E., Millard D.W., Yao J., et al. Framework for modeling high-impact, low-frequency power grid events to support risk-informed decisions. International Journal of Disaster Risk Reduction. 2016, vol. 18, pp. 125–137. DOI: 10.1016/j.ijdrr.2016.06.008.

221. Viljanen A. Geomagnetically induced currents in the Finnish natural gas pipeline. Geofisica. 1989, vol. 25, pp. 135–159.

222. Viljanen A. The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophys. Res. Lett. 1997, vol. 24, pp. 631–634.

223. Viljanen A. Relation of geomagnetically induced currents and local geomagnetic variations. IEEE Transactions Power Delivery. 1998, vol. 13, pp. 1285–1290.

224. Viljanen A., Pirjola R. Geomagnetically induced currents in the Finnish high-voltage power system, A geophysical review. Survey Geophys. 1994, vol. 15, no. 4, pp. 383–408.

225. Viljanen A., Tanskanen E. Climatology of rapid geomagnetic variations at high latitudes over two solar cycles. Ann. Geophys. 2011, vol. 29, iss. 10, pp. 1783–1792. DOI: 10.5194/angeo-29-1783-2011.

226. Viljanen A., Amm O., Pirjola R. Modelling geomagnetically induced currents during different ionospheric situations. J. Geophys. Res. 1999, vol. 104, pp. 28059–28072. DOI: 10.1029/1999JA900337.

227. Viljanen A., Nevanlinna H., Pajunpaa K., Pulkkinen A. Time derivative of the horizontal geomagnetic field as an activity indicator. Ann. Geophys. 2001, vol. 19, pp. 1107–1118.

228. Viljanen A., Pulkkinen A., Amm O., Pirjola R., Korja T., BEAR Working Group. Fast computation of the geoelectric field using the method of elementary current systems and planar Earth model. Ann. Geophys. 2004, vol. 22, iss. 1, pp. 101–113. DOI: 10.5194/angeo-22-101-2004.

229. Viljanen A., Tanskanen E. I., Pulkkinen A. Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Ann. Geophys. 2006a, vol. 24, iss. 2, pp. 725–733. DOI: 10.5194/angeo-24-725-20066.

230. Viljanen A., Pulkkinen A., Pirjola R., Pajunpää K., Posio P., Koistinen A. Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline. Space Weather. 2006b, vol. 4, iss. 10, S10004. DOI: 10.1029/2006SW000234.

231. Viljanen A, Pirjola R., Wik M., Ádám A., Prácser E., Sakharov Ya., Katkalov J. Continental scale modelling of geomagnetically induced currents. J. Space Weather and Space Climate. 2012, vol. 2, no. A17. DOI: 10.1051/swsc/ 2012017.

232. Viljanen A., Pirjola R., Pracser E., Ahmadzai S.,Singh V. Geomagnetically induced currents in Europe: Characteristics based on a local power grid model. Space Weather. 2013, vol. 11, iss. 10, pp. 575–584. DOI: 10.1002/swe.20098.

233. Viljanen A, Pirjola R, Prácser E., Katkalov J., Wik M. Geomagnetically induced currents in Europe. J. Space Weather and Space Climate. 2014, vol. 4, no. A09. DOI: 10.1051/swsc/2014006.

234. Viljanen A., Wintoft P., Wik M. Regional estimation of geomagnetically induced currents based on the local magnetic or electric field. J. Space Weather and Space Climate. 2015, vol. 5, iss. A24. DOI: 10.1051/swsc/2015022.

235. Vorobiev V.G., Sakharov Ya.A., Yagodkina O.I, Petrukovich A.A., Selivanov V.N. Geomagnetically induced currents and their relationship with the position of the western electrojet and the boundaries of auroral precipitation. Trans. of the Kola Scientific Center of the Russian Academy of Sciences. 2018, vol. 5, iss. 4, pp. 16–28. DOI: 10.25702/KSC.2307-5252.2018.9.5.16-28. (In Russian).

236. Vorobev A.V., Pilipenko V.A., Sakharov Ya.A., Selivanov V.N. Statistical relationships of variations in the geomagnetic field, auroral electrojet and geomagnetically induced currents. Solar-Terr. Phys. 2019, vol. 5, no. 1. pp. 35–42. DOI: 10.12737/stp-51201905. (In Russian).

237. Vorobev A.V., Pilipenko V.A., Enikeev T.A., Vorobieva G.R. Geographic information system for analyzing the dynamics of extreme geomagnetic disturbances based on observations of ground-based stations. Computer Optics. 2020a, vol. 44, no. 5, pp. 782–790. DOI: 10.18287/2412-6179-CO-707. (In Russian).

238. Vorobev A.V., Pilipenko V.A. Reshetnikov A.G., Vorobeva G.R., Belov M.D. Web-oriented visualization of auroral oval geophysical parameters. Scientific Visualization. 2020b, vol. 12, no. 3, pp. 108–118. DOI: 10.26583/sv.12.3.10. (In Russian).

239. Vorobev A.V., Pilipenko V.A., Krasnoperov R.I., Vorobeva G.R., Lorentzen D.A. Short-term forecast of the auroral oval position on the basis of the “virtual globe” technology. Russian J. Earth Sciences. 2020c, vol. 20, ES6001. DOI: 10.2205/2020ES000721.

240. Wait J. Geo-Electromagnetism. New York: Elsevier, 1982, 278 p.

241. Wang W., Wiltberger M., Burns A.G., Solomon S.C., Killeen T.L., Maruyama N., Lyon J.G. Initial results from the coupled magnetosphere–ionosphere–thermosphere model: thermosphere–ionosphere responses. J. Atmos. Solar-Terr. Phys. 2004, vol. 66, pp. 1425–1441. DOI: 10.1016/j.jastp.2004.04.008.

242. Watari S., Kunitake M., Kitamura K., Hori T., Kikuchi T., Shiokawa K., et al. Measurements of geomagnetically induced current in a power grid in Hokkaido, Japan. Space Weather. 2009, vol. 7, iss. 3. DOI: 10.1029/2008SW000417.

243. Wei L.H., Homeier N., Gannon J. L. Surface electric fields for North America during historical geomagnetic storms. Space Weather. 2013, vol. 11, pp. 451–462. DOI: 10.1002/swe.20073.

244. Weigel R.S., Klimas A.J., Vassiliadis D. Solar wind coupling to and predictability of ground magnetic fields and their time derivatives. J. Geophys. Res. 2003, vol. 108, iss. A7, 1298. DOI: 10.1029/2002JA009627.

245. Weimer D.R. An empirical model of ground-level geomagnetic perturbations. Space Weather. 2013, vol. 11, pp. 107–120. DOI: 10.1002/swe.20030.

246. Wik M., Viljanen A., Pirjola R., Pulkkinen A., Wintoft P., Lundstedt H. Calculation of geomagnetically induced currents in the 400 kV power grid in southern Sweden. Space Weather. 2008, vol. 6, iss. 7, S07005. DOI: 10.1029/2007SW000343.

247. Wik M., Pirjola R., Lundstedt H., Viljanen A., Wintoft P., Pulkkinen A. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems. Ann. Geophys. 2009, vol. 27, no. 4, pp. 1775–1787.

248. Wintoft P. Study of the solar wind coupling to the time difference horizontal geomagnetic field. Ann. Geophys. 2005, vol. 23, pp. 1949–1957. DOI: 10.5194/angeo-23-1949-2005.

249. Yagova N.V., Pilipenko V.A., Fedorov E.N., Lhamdondog A.D., Gusev Yu.P. Geomagnetically induced currents and space weather: Pi3 pulsations and extreme values of the time derivatives of the horizontal components of the geomagnetic field. Izvestiya, Physics of the Solid Earth. 2018, no. 5, pp. 89–103.

250. Yagova N.V., Pilipenko V.A., Sakharov Y.A., Selivanov V.A. Spatial scale of geomagnetic Pc5/Pi3 pulsations as a factor of their efficiency in generation of geomagnetically induced currents. Earth, Planets and Space. 2021, vol. 73, DOI: 10.21203/

251. Zhang J.J., Wang C., Tang B.B. Modeling geomagnetically induced electric field and currents by combining a global MHD model with a local one-dimensional method. Space Weather. 2012, vol. 10, S05005. DOI: 10.1029/2012SW000772.

252. Zhang J.J., Wang C., Sun T.R., Liu C.M., Wang K.R. GIC due to storm sudden commencement in low-latitude high-voltage power network in China: Observation and simulation. Space Weather. 2015, vol. 13, iss. 10, pp. 643–655. DOI: 10.1002/2015SW001263.

253. Zheng K., Trichtchenko L., Pirjola R., Liu L.G. Effects of geophysical parameters on GIC illustrated by benchmark network modeling. IEEE Transactions Power Delivery. 2013, vol. 28, pp. 1183–1191. DOI: 10.1109/TPWRD.2013.2249119.

254. URL: http://eurisgic.orgl (accessed November 11, 2020).

255. URL: (accessed November 11, 2020).

256. URL: (accessed November 11, 2020).

257. URL: (accessed November 11, 2020).

258. URL: (accessed November 11, 2020).

259. URL: (accessed November 11, 2020).

260. URL: (accessed November 11, 2020).

261. URL: (accessed November 11, 2020).

262. URL: ((accessed June 11 iyunya, 2021).

263. URL: (accessed November 11, 2020).

264. URL: _Office (accessed November 11, 2020).

Login or Create
* Forgot password?