INVERSION OF BACKSCATTER IONOGRAMS INTO QUASIPARABOLIC IONOSPHERIC LAYER PARAMETERS
Abstract and keywords
Abstract (English):
We present an inversion scheme of the backscatter signal leading edge into parameters of the quasi-parabolic electron density profile, which is based on the comparison of experimental and calculated minimum delays of scattered signals with corresponding distance to the skip zone border. Input parameters are frequency dependences of minimum group path of signal propagation, derived from processing and interpreting backscatter ionograms. For a fixed sounding frequency, the ionospheric parameter pair — the critical frequency and height of the F2-layer maximum — is defined as the intersection point of two curves representing solutions of minimization problems for discrepancy functionals of the minimum group path and the range to the skip zone border. Determining the ionospheric parameters by this inversion scheme on the sounding frequency grid allows us to construct a two-dimensional distribution of electron density in the direction of backscatter sounding.

Keywords:
ionosphere, ionogram, radio wave propagation, backscatter ionospheric sounding
Text
Publication text (PDF): Read Download
References

1. Benito E., Bourdillon A., Bourdillon A., Rannou V. Inversion of HF backscatter ionograms using elevation scans. J. Atm. Solar-Terr. Phys. 2008, vol. 70, no. 15, pp. 1935-1948. DOI:https://doi.org/10.1016/j.jastp.2008.09.031.

2. Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather. 2017, vol.15, no. 2, pp. 418-429.

3. Croft T.A. Hoogansian H. Exact ray calculations in a quasi-parabolic ionosphere with no magnetic field. Radio Sci. 1968, vol. 3, no. 1, pp. 69-74.

4. Davies K. Ionospheric Radio Waves. Blaisdell, London, 1969. 460 p.

5. Kurkin V.I., Orlov I.I., Popov V.N. Metod normalnykh voln v problem korotkovolnovoi svyazi [Normal Wave Technique in HF Radio Communication Problem]. Moscow, Nauka, 1981. (In Russian).

6. Li N., Zhao Z., Zhou C., Chen G., Yang G., Huang S., Li T. Inversion of sweep frequency backscatter ionogram from Monostatic HF Sky-Wave Radar. IEEE Geoscience and Remote Sensing Lett. 2013, vol. 10, no. 6, pp. 1360-1364.

7. Norman R.J., Dyson P.L. HF radar backscatter inversion technique. Radio Sci. 2006, vol. 41, RS4010. DOI:https://doi.org/10.1029/2005RS003355.

8. Penzin M.S., Ponomarchuk S.N., Grozov V.P., Kurkin V.I. Real-time techniques for interpretation of ionospheric backscatter sounding data. Radio Sci. 2019, vol. 54, iss. 5, pp. 480-491. DOI:https://doi.org/10.1029/2018RS006656.

9. Podlesnyi A.V., Brynko I.G., Kurkin V.I., et al. Multifunctional chirp ionosonde for monitoring the ionosphere. Geliogeofizicheskie issledovaniya [Heliogeophys. Res.]. 2013, no. 4, pp. 24-31. (In Russian).

10. Ponomarchuk S.N, Kurkin V.I., Oinats A.V. The diagnostics of ionosphere and earth ground surface by backscatter sounding data. Proc. PIERS-2009. Moscow, 2009. vol. I-II, pp. 1307-1310.

11. Ponomarchuk S.N., Grozov V.P., Kotovich G.V., Kurkin V.I., Penzin M.S. Diagnostics of HF radio channel: based on data from backscatter ionospheric sounding by continuous chirp signal. Solar-Terrestrial Physics. 2018, vol. 4, iss. 2. pp. 17-23. DOI:https://doi.org/10.12737/stp-42201804.

12. Ponomarchuk S.N., Kurkin V.I., Penzin M.S. Features of backscatter ionospheric sounding as studied with a chirp ionosonde. Solar-Terr. Phys. 2017, vol. 3, iss. 3, pp. 54-60. DOI:https://doi.org/10.12737/stp-332017062017.

13. Rao N.N. Inversion of sweep-frequency sky-wave backscatter leading edge for quasiparabolic ionospheric layer parameters. Radio Sci. 1974, vol. 9, no. 10. pp. 845-847.

Login or Create
* Forgot password?