Rubrics: REVIEWS
Abstract and keywords
Abstract (English):
The Heliogeophysical Complex of RAS, which is developing at the Institute of Solar-Terrestrial Physics SB RAS in the Irkutsk region, includes instruments for studying the Sun, the upper atmosphere and the mesostratospheric lidar system (MS lidar) for analyzing the neutral part of the atmosphere from Earth’s surface to the thermosphere (100–110 km altitude). More specifically, the objective of the MS lidar is to measure profiles of thermodynamic parameters of the atmosphere and the altitude distribution of the aerosol-gas composition. To solve these problems, the MS lidar ensures the use of several laser sensing methods at a number of specially selected laser wavelengths in the total range 0.35–1.1 μm. In this case, the following types of scattering are used: molecular, aerosol, Raman, resonance, as well as differential absorption, Doppler broadening and shift of the spectrum of scattered radiation. The article describes the methods used in the MS lidar and the measured atmospheric characteristics.

laser sensing, stratosphere, mesosphere, lidar, atmospheric thermodynamics
Publication text (PDF): Read Download

1. Bondarenko S.L., Burlakov V.D., Grishaev M.V., Zuev V.V., Marichev V.N., Pravdin V.L. Laser sensing of the mesosphere at the Siberian lidar station. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 1994, vol. 7, no. 11-12, pp. 1652–1655. (In Russian).

2. Browell E.V., Wilkerson T.D., Mcilrath T.J. Water vapor differential absorption lidar development and evolution. Applied Optics. 1979, vol. 18, no. 20, pp. 3474–3483. DOI: 10.1364/ AO.18.003474.

3. Burlakov V.D., Elnikov A.V., Zuev V.V., Marichev V.N., Pravdin V.L., Smirnov S.V., Stolyarova N.A. Lidar observations of the stratospheric ozone and aerosol in Tomsk (56° N, 85° E) following the eruption of the Pinatubo volcano. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 1993, vol. 6, no. 10, pp. 1224–1233. (In Russian).

4. Czin Czyao, Gotao Yan, Czihun Van, Syueu Chen, Facyun Li. Sporadic potassium layers and their relationship with sporadic E-layers in the mesopause region above Beijing (China). Solnechno-zemnaya fizika [Solar-Terr. Phys]. 2017, vol. 3, no. 2, pp. 64–69. DOI: 10.12737/22597.

5. Cheremisin A.A., Marichev V.N., Novikov P.V. Polar stratospheric cloud transfer from Arctic regions to Tomsk in January, 2010. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2013, vol. 26, no. 2, pp. 93–99. (In Russian).

6. Elnikov A.V., Zuev V.V., Marichev V.N., Tsaregorod-tsev S.I. First results of lidar observations of stratospheric ozone above western Siberia. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 1989, vol. 2, no. 9, pp. 995–996. (In Russian).

7. Elnikov A.V., Zuev V.V., Kataev M.Yu., Marichev V.N., Micel A.A. Sensing of stratospheric ozone with an UV bifrequency DIAL: methods for solving the inverse problem and results of the field experiment. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 1992, vol. 5, no. 6, pp. 576–587. (In Russian).

8. Kaul B.V. Mnogovolnovoi lidar dlya zondirovaniya atmosfery [Multi-wave lidar for sensing the atmosphere]. Auth. Certificate no. 1345861, 1987. (In Russian).

9. Kawahara T.D., Kitahara T., Kobayashi F., Saito Y., Nomura A. Sodium temperature lidar based on injection seeded Nd:YAG pulse lasers using a sum-frequency generation technique. Opt. Express. 2011, vol. 19, pp. 3553–3561.

10. Marichev V.N. Lidar investigations of stratospheric warming events above Tomsk in 2008–2010. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2011a, vol. 24, no. 5, pp. 386–391. (In Russian).

11. Marichev V.N. Investigation into features of manifestation of winter stratospheric warming events over Tomsk from the data of lidar temperature measurements in 2010–2011. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2011b, vol. 24, no. 12, pp. 1041–1046. (In Russian).

12. Marichev V.N. Investigation of variability of the background aerosol vertical structure above Tomsk based on lidar observations in 2010–2011. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2012, vol. 25, no. 11, pp. 976–984. (In Russian).

13. Marichev V.N. The analysis of the air density and temperature behaviour in the stratosphere above Tomsk in periods of perturbed and quiet states performed according to the results of lidar measurements. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2013, vol. 26, no. 9, pp. 783–792. (In Russian).

14. Marichev V.N., Samokhvalov I.V. Lidar observations of aerosol volcanic layers in stratosphere of Western Siberia in 2008–2010. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2011, vol. 24, no. 3, pp. 224–231. (In Russian).

15. Marichev V.N., Zuev V.V., Grishaev M.V., Smirnov S.V. Lidar and spectrophotometric measurements of vertical distribution of ozone, nitrogen dioxide, and temperature in the stratosphere over Tomsk (Western Siberia). Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 1996, vol. 9, no. 12, pp. 1604–1608. (In Russian).

16. Matvienko G.G., Bobrovnikov S.M., Kaul B.V. Application of lidars to study the middle and upper atmosphere. Solnechno-zemnaya fizika [Solar-Terr. Phys]. 2010, vol. 16, pp. 76–81. (In Russian).

17. Matvienko G.G., Kaul B.V., Marichev V.N., Burlakov V.D., Bobrovnikov S.M., Yakovlev S.V. Lidar for the heliogeophysical complex of the RAS. Technical appearance. Sbornik trudov XXIV Vserossiiskoi konferentsii “Rasprostranenie radiovoln (RRV-24)” [Proceedings of the XXIV All-Russian Conference “Radio Wave Propagation (RWP-24)”]. 2014, pp. 13–18. (In Russian).

18. Matvienko G.G., Balin YU.S., Bobrovnikov S.M., Romanovskii O.A., Kohanenko G.P., Samoilova S.V., Penner I.E., Gorlov E.V., Zharkov V.I., Sadovnikov S.A., Harchenko O.V., Yakovlev S.V., Bazhenov O.E., Burlakov V.D., Dolgii S.I., Makeev A.P., Nevzorov A.A., Nevzorov A.V. Sibirskaya lidarnaya stantsiya: apparatura i rezul’taty [Siberian lidar station: equipment and results]. Tomsk, IOA SB RAS Publ., 2016, 440 p. (In Russian).

19. Polekh N.M., Chernigovskaya M.A., Yakovleva O.E. On the formation of the F1 layer during sudden stratospheric warming events. Solar-Terr. Phys. 2019, vol. 5, no. 3, pp. 119–129. DOI: 10.12737/stp-53201914.

20. Polyakova A.S., Chernigovskaya M.A., Perevalova N.P. Study of the response of the ionosphere to sudden stratospheric warming in the Asian region of Russia. Solnechno-zemnaya fizika [Solar-Terr. Phys]. 2015, vol. 1, no. 4, pp. 47–57. DOI: 10.12737/13527. (In Russian).

21. Rees D., Barnett J.J., Labitzke K. COSPAR International Reference Atmosphere, 1986: Part 2: Middle Atmosphere Models. Adv. Space Res. 1990, vol. 10, no. 12, p. 525.

22. Schoch A., Baumgarten G., Fiedler J. Polar middle atmosphere temperature climatology from Rayleigh lidar measurements at ALOMAR (69° N). Ann. Geophys. 2008, vol. 26, no. 7, pp. 1681–1698. DOI: 10.5194/angeo-26-1681-2008.

23. Spelsberg D., Meyer W. Dynamic multipole polarizabilities, reduced spectra, and interaction coefficients for N2 and CO. J. Chem. Phys. 1999, vol. 111, no. 21, pp. 9618–9624. DOI: 10.10 63/1.480336.

24. Unchino O., Maeda M., Hirono M. Applications of excimer lasers to laser-radar observations of the upper atmosphere. JEEE J. Quant. Electr. 1979, vol. QE-15, no. 10, pp. 1094–1107. DOI: 10.1109/JQE.1979.1069905.

25. von Zahn U., von Cossart G., Fiedler J., Fricke K.H., Nelke G., Baumgarten G., Rees D., Hauchecorne A., Adolfsen K. The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance. Ann. Geophys. 2000, vol. 18, pp. 815–833. DOI: 10.1007/s00585-000-0815-2.

26. Zuev V.V., Zuev V.E. Distancionnoe opticheskoe zondirovanie atmosfery [Remote optical sensing of the atmosphere]. St Petersburg, Hydrometeoizdat Publ., 1992. 232 p. (In Russian).

27. Zuev V.E., Makushkin Yu.S., Marichev V.N., Mitsel A.A., Samokhvalov I.V., Sosnin A.V. Laser sensing of atmospheric humidity profile. DAN [Reports of the Academy of Science]. 1981, vol. 251, no. 6, pp. 1338–1342. (In Russian).

28. Zuev V.V., Zuev V.E., Makushkin Yu. S., Marichev V.N., Mitsel A.A. Laser sensing of atmospheric humidity: experiment. Applied Optics. 1983, vol. 22, no. 23, pp. 3742–3746. DOI: 10.1364/AO.22.003742.

29. Zuev V.V., Marichev V.N., Bondarenko S.L., Dolgii S.I., Sharabarin E.V. Preliminary results of tropospheric temperature sensing using a raman lidar on the first vibrational-rotational transition of nitrogen molecules. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 1996a, vol. 9, no. 12, pp. 1609–1611. (In Russian).

30. Zuev V.V., Marichev V.N., Dolgii S.I., Sharabarin E.V. Some experimental results of lidar sensing of the ozone and temperature in the troposphere and stratosphere. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 1996b, vol. 9, no. 8, pp. 1123–1125. (In Russian).

31. Zuev V.V., Kataev M.Yu., Marichev V.N. Technique for reconstructing the ozone profiles from UV lidar data: correction for aerosol and temperature stratification. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 1997, vol. 10, no. 9, pp. 1103–1111. (In Russian).

32. Yasyukevich A.S., Klimenko M.V., Kulikov Yu.Yu., Klimenko V.V., Bessarab F.S., Koren’kov Yu.N., Marichev V.N., Ratovsky K.G., Kolesnik S.A. Changes in the middle and upper atmosphere parameters during the January 2013 sudden stratospheric warming. Solar-Terr. Phys. 2018, vol. 4, no. 4, pp. 62–75. DOI: 10.12737/stp-44201807.