Abstract and keywords
Abstract (English):
In this study, we examine the relationship of the ASY-H index characterizing the partial ring current intensity with interplanetary medium parameters and auroral activity during the main phase of magnetic storms, induced by the solar wind (SW) of different types. Over the period 1979–2017, 107 magnetic storms driven by CIR and ICME (MC + Ejecta) events have been selected. We consider magnetic storms with Dstmin≤ – 50 nT. The average ASY-H index (ASYaver) during the magnetic storm main phase is shown to increase with increasing SW electric field and southward IMF Bz regardless of SW type. There is no relationship between ASYaver and SW velocity. For the CIR and ICME events, the average AE (AEaver) and Kp (Kp aver) indices have been found to correlate with ASYaver. The highest correlation coefficient between AEaver and ASYaver (r = 0.74) is observed for the magnetic storms generated by CIR events. A closer relationship between Kp aver and ASYaver (r = 0.64) is observed for the magnetic storms induced by ICME events. The ASYaver variations correlate with Dstmin. The relationship between ASYaver and the rate of storm development is weak.

magnetic storm, ASY-H index, Dst index, solar wind, electric field
Publication text (PDF): Read Download

1. Akasofu S.-I., Chapman S. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. Moscow, Mir Publ., 1974, 384 p. (In Russian). (English edition: Akasofu S.-I., Chapman S. Solar-Terrestrial Physics. Oxford, Clarendon Press, 1972, 901 p.).

2. Barkhatov N.A., Levitin A.E, Tserkovnyuk O.M. Relation of the indices characterizing the symmetric (SYM) and asymmetric (ASY) ring currents to the AE (AU, AL) indices of auroral electrojet activity. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2008, vol. 48, no. 4, pp. 520–525. (In Russian).

3. Barkhatova O.M. Nonlinear connection between the auroral (AU, AL) and mid-latitude (SYM-H, ASY-H) geomagnetic activity indices at the main phase of geomagnetic storm. Solnechno-zemnaja fizika [Solar-Terrestrial Physics]. 2013, vol. 23, pp. 100–108. (In Russian).

4. Bakhmina K.Yu., Kalegaev V.V. Modeling the partial ring current effect in a disturbed magnetosphere. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2008, vol. 48, no. 6, pp. 770–779. (In Russian).

5. Borovsky J.E., Denton M.H. Differences between CME driven storms and CIR driven storms. J. Geophys. Res. 2006, vol. 111. DOI: 10.1029/2005JA011447.

6. Boroyev R.N., Vasiliev M.S. Substorm activity during the main phase of magnetic storms induced by the CIR and ICME events. Adv. Space Res. 2018, vol. 61, iss. 1, pp. 348–354. DOI: 10.1016/j.asr.2017.10.031.

7. Burton R.K., McPherron R.L., Russell C.T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975, vol. 80, iss. 31, pp. 4204–4214. DOI: 10.1029/JA080i031p04204.

8. Davis T.N., Sugiura M. Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 1966, vol. 71, iss. 3, pp. 785–801. DOI: 10.1029/JZ071i003p00785.

9. Despirak I.V., Lubchich A.A., Yahnin A.G., Kozelov B.V., Biernat H.K. Development of substorm bulges during different solar wind structures. Ann. Geophys. 2009, vol. 27, pp. 1951–1960. DOI: 10.5194/angeo-27-1951-2009.

10. Dremukhina L.A., Lodkina I.G., Yermolaev Y.I. Statistical study of the effect of different solar wind types on magnetic storm generation during 1995–2016. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2018, vol. 58, no.6, pp. 760–768. (In Russian). DOI: 10.1134/S0016794018060032.

11. Feldstein Y.I., Levitin A.E., Kozyra J.U., Tsurutani B.T., Prigancova A., Alperovich L., et al. Self-consistent modeling of the large-scale distortions in the geomagnetic field during the 24–27 September 1998 major magnetic storm. J. Geophys. Res. 2005, vol. 110. DOI: 10.1029/2004JA010584.

12. Fok M.-C., Wolf R.A., Spiro R.W., Moore T.E. Comprehensive computational model of the Earth’s ring current. J. Geophys. Res. 2001, vol. 106, iss. A5, pp. 8417–8424. DOI: 10.1029/2000JA000235.

13. Gonzalez W.D., Joselyn J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T., Vasyliunas V.M. What is a geomagnetic storm? J. Geophys. Res. 1994, vol. 99, pp. 5771–5792. DOI: 10.1029/93JA02867.

14. Grafe A., Bespalov P.A., Trakhtengerts V.Y., Demek-hov A.G. Afternoon mid-latitude current system and low-latitude geomagnetic field asymmetry during geomagnetic storms. Ann. Geophys. 1997, vol. 15, iss. 12, pp. 1537–1547. DOI: 10.1007/s00585-997-1537-5.

15. Iyemori T., Rao D.R.K. Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to storm-substorm relation. Ann. Geophys. 1996, vol. 14, iss. 6, pp. 618–622. DOI: 10.1007/s00585-996-0608-3.

16. Kane R.P. How good is the relationship of solar and interplanetary plasma parameters with geomagnetic storms? J. Geophys. Res. 2005, vol. 110, A022B. DOI: 10.1029/2004 JA010799.

17. Kalegaev V.V., Bakhmina K.Yu., Alexeev I.I., Belenkaya E.S., Feldstein Ya I., Ganushkina N.V. Ring current asymmetry during a magnetic storm. Geomagnetism and Aeronomy. 2008, vol. 48, no. 6, pp. 747–758. DOI: 10.1134/ S0016793208060078.

18. Kozyra J.U., Liemohn M.W. Ring current energy input and decay. Space Sci. Rev. 2003, vol. 109, pp. 105–131.

19. Liemohn M.W., Kozyra J.U., Thomsen M.F., Roeder J.L., Lu G., Borovsky J.E., Cayton T.E. Dominant role of the asymmetric ring current in producing the stormtime Dst. J. Geophys. Res. 2001, vol. 106, pp. 10883–10904. DOI: 10.1029/ 2000JA000326.

20. Love J.J., Gannon J.L. Revised Dst and the epicycles of magnetic disturbance: 1958–2007. Ann. Geophys. 2009, vol. 27, iss. 8, pp. 3101–3131. DOI: 10.5194/angeo-27-3101-2009.

21. Lyatsky V.B., Maltsev Yu.P. Magnitosferno-ionosfernoye vzaimodeistvie [Magnetosphere-Ionosphere Coupling]. Moscow, Nauka Publ., 1983, 192 p. (In Russian).

22. Nikolaeva N.S., Yermolaev Y.I., Lodkina I.G. Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2011, vol. 51, no.1, pp. 51–67. (In Russian).

23. Nishida A. Geomagnitnyi diagnoz magnitosfery [Geomagnetic Diagnosis of the Magnetosphere]. Moscow, Mir Publ., 1980, 299 p. (In Russian). (English edition: Nishida A. Geomagnetic Diagnosis of the Magnetosphere. New York, Heidelberg, Berlin, Springer-Verlag, 1978, 256 p.).

24. Plotnikov I.Ya., Barkova E.S. Advances in space research nonlinear dependence of Dst and AE indices on the electric field of magnetic clouds. Adv. Space Res. 2007, vol. 40, pp. 1858–1862. DOI: 10.1016/j.asr.2007.09.025.

25. Sharma A.S., Baker D.N., Grande M., Kamide Y., Lakhina G.S., McPherron R.M., Reeves G.D., Rostoker G., Vondrak R., Zelenyiio L. Storm-substorm relationship: Current understanding and outlook. Disturbances in Geospace: The Storm-Substorm Relationship. 2003, 268 p. (Geophys. Monogr. Ser., vol. 142). DOI: 10.1029/142GM01.

26. Sugiura M. Hourly values of the equatorial Dst for IGY. Annales of the International Geophysical Year. 1964, vol. 35, pp. 945–948.

27. Yermolaev Yu.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Yu. Catalog of large-scale solar wind phenomena during 1976–2000. Kosmicheskiye issledovaniya [Cosmic Research]. 2009, vol. 47, no. 2, pp. 99–113. (In Russian).

28. Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Yu. Specific interplanetary conditions for CIR-, Sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis. Ann. Geophysicae. 2010, vol. 28, pp. 2177–2186. DOI: 10.5194/angeo-28-2177-2010.

29. Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Y. Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res. 2012, vol. 117, A00L07. DOI: 10.1029/2011JA017139.

30. URL: (accessed 30 September 2019).

31. URL: (accessed 30 September 2019).

32. URL: (accessed 30 September 2019).

33. URL: (accessed 30 September 2019).

Login or Create
* Forgot password?