Bryansk, Bryansk, Russian Federation
Bryansk, Bryansk, Russian Federation
VAC 05.02.2004 Трение и износ в машинах
UDK 62 Инженерное дело. Техника в целом. Транспорт
GRNTI 55.03 Машиноведение и детали машин
A contact stiffness of a flat join in engineering surfaces depends upon the presence of corrugation and roughness which are actually on any surface. An efficient method for the analysis of a contact interaction between wavy surfaces is a simulation: statistical methods for the estimate are unacceptable because of a small number of waves and the absence of a proper statistical distribution of their height, and a fractal model manifesting the peculiarities of rough layer structure and the presence of self-affinity is most suitable for the estimate of contact stiffness. In this paper there is carried out an estimate of the impact of corrugation and roughness of an engineering surface upon normal contact stiffness of a flat joint by methods of the computer modeling of the contact interaction between a wavy and fractal (rough) surfaces. With this purpose there was developed a two-level model of the contact interaction of engineering surfaces according to which on the first level there were estimated parameters of wave contact interaction. There were obtained outline spots of a contact on which were modeled fractal surfaces emulating roughness, and estimated the actual spots of a contact. A computer experiment has shown that the dependence of normal contact stiffness upon a load has a vivid non-linear character, and a stiffness of wavy surface is about 30 times larger than a stiffness of a rough layer.
corrugation, roughness, contact stiffness, fractal model, simulation
Введение
Контактная жесткость плоского стыка инженерных поверхностей зависит от наличия волнистости и шероховатости. Практически любая инженерная поверхность одновременно имеет отклонения от идеальной формы в виде волнистости и шероховатости. Волнистость поверхности не проявляет фрактальных свойств, которые присущи шероховатости. Это обстоятельство служит основанием для разного подхода при оценке нормальной контактной жесткости для волнистости и шероховатости поверхности. В первом случае эффективным методом анализа контактного взаимодействия является имитационное моделирование: статистические методы оценки неприемлемы ввиду малого количества волн и отсутствия надлежащего статистического распределения их высот. Во втором случае на основе анализа таких известных моделей контакта шероховатых поверхностей, как модели Арчарда, Гринвуда - Вильямсона и Маджумдара - Бхушана, можно сделать вывод, что фрактальная модель, отражающая особенности строения шероховатого слоя и наличие самоаффинности, наиболее пригодна для оценки контактной жесткости фрактальной поверхности.
Двухуровневая модель контактного взаимодействия
Инженерные поверхности достаточно больших размеров кроме макроотклонения (form) имеют и другие отклонения от правильной геометрической формы: волнистость (waviness) и шероховатость (roughness), представленные на рис. 1а.
Макроотклонения от идеальной формы и волнистость не являются фрактальными объектами в отличие от шероховатости, которая характеризуется фрактальными параметрами. Определение параметров контактного взаимодействия при наличии волнистости и шероховатости требует разных подходов. На рис. 1б показаны элементы поверхности, включающие волнистость и шероховатость.
Для оценки параметров контактного упругого взаимодействия волнистых поверхностей следует использовать имитационное моделирование - с учетом небольшого количества волн и невозможности применения статистических методов анализа. Параметры контакта шероховатых поверхностей можно определить с помощью фрактальной модели. Предлагаемый подход основан на раздельном определении деформации волн δW под действием нормальной нагрузки F на сопряжение, позволяющей найти контактное давление и фактическую (в данном случае - контурную) площадь и деформацию δR шероховатого слоя, расположенного на контурной площади и нагруженного той же силой, что и волнистая поверхность. Суммарная деформация равна δ = δW + δR. Контактная жесткость плоского стыка в этом случае определяется зависимостью
Контакт волнистой поверхности с гладкой
Задачу контактного взаимодействия двух волнистых поверхностей можно упростить, рассматривая контакт эквивалентной волнистой поверхности с эквивалентными параметрами с гладкой. Рассмотрим процедуру определения параметров контактного взаимодействия таких поверхностей. Полагаем, что распределение высот цилиндрических волн подчиняется определенному закону (рис. 2).
Рис. 2. Волнистая торцовая поверхность
Наиболее точный закон распределения выступов волн с разной высотой расположения - логарифмически нормальный. Пусть XR - случайная величина, распределенная равномерно на отрезке [0,1]. Тогда можно найти зависимость случайной величины (максимальной высоты волны), распределенной по логарифмически нормальному закону, от XR. Используя данные работы [1], после сглаживания данных получим уравнение регрессии вида
XLN=1,60·10-3exp(9,78XR)+7,06.
Здесь XLN = Wmax имеет размерность, выражаемую в мкм.
С помощью представленного уравнения регрессии будем задавать набор вершин волн (hwi~Wmax/2) и выполнять имитационное моделирование по следующему алгоритму.
На первом этапе зададим нагрузку F, приходящуюся на nW волн поверхности, и радиус закругления верхней части волн rw. Приняв логарифмически нормальный закон распределения вершин волн по высоте, смоделируем волну, состоящую из nW случайных величин (СВ). Определим начальное сближение δmax волн, считая на первом этапе, что имеем только одну волну, по формуле
Здесь L - длина линии контакта (L = r2 – r1 - толщина пояска торцового уплотнения);
При предварительно рассчитанной величине сближения δmax деформация i-й волны, согласно рис. 3, оказывается равной
На втором этапе найдем реакцию i-й волны Fi, соответствующую деформации δi. Сравним сумму реакций, приходящихся на nW волн, ΣFi с заданной внешней нагрузкой F. Если ΣFi >F, то следует уменьшить сближение: δmax = δmax – Δ, где Δ = δmax /2. Если ΣFi <F, то следует соответственно увеличить сближение: δmax = δmax + Δ. Если происходит смена неравенства с большего на меньшее или наоборот, то методом половинного деления уменьшаем Δ до Δ/2. Расчет следует закончить, если выполняется условие
Здесь [ε] - заданная точность (например 0,01).
Для получения статистически значимых результатов алгоритма выполним N прогонов моделирования волн (предварительно примем N = 20) и определим в каждом случае сближение δi, i = 1, …, N. По результатам N прогонов представляется возможным вычислить среднее арифметическое отклонение
Здесь дисперсия отклика (величины сближения) равна
Табличные значения параметра t (критерия Стьюдента) можно найти в справочных пособиях; так, при N = 20 и α = 0,10 имеем t (19;0.95) = 2,09.
Если отношение
Изменив начальную нагрузку на волны, в соответствии с предложенной процедурой можно найти другие соотношения нагрузки и величины сближения, такие как F2 ~ δ (N), F3 ~ δ (N), …, Fn ~ δ (N).
Для выполнения расчётов по представленному алгоритму авторами была написана программа в среде программирования C++ Rad Studio 10. На рис. 4 представлены исходные данные и результаты расчета контактного взаимодействия эквивалентной волнистой поверхности с гладкой.
Полученная зависимость сближения от нагрузки при данных, приведенных на рис. 4, представлена уравнением
Здесь приняты следующие размерности: [FW], Н; [
Удельная контактная жесткость волнистой поверхности равна
Для данного примера
Определим номинальную площадь поверхности с учетом шероховатости. Она равна контурной площади волнистой поверхности. Т.е., принимая во внимание рис. 4, найдем для нагрузки (
Фрактальная модель контактного взаимодействия шероховатых поверхностей
Контакт между шероховатыми поверхностями характеризуется взаимодействием микронеровностей, которое приводит к образованию фактической площади контакта, являющейся небольшой частью геометрической (или номинальной) области контакта. В 1957 г. Арчард рассматривал шероховатую поверхность в виде набора сферических сегментов, покрытых также сферическими сегментами меньшего размера (рис. 5а).
Заключение
В работе произведена оценка контактной жёсткости стыка волнистых шероховатых поверхностей с применением компьютерного моделирования. Предлагаемые методы могут быть использованы при проектировании металл-металлических уплотнительных устройств и болтовых соединений, подвергнутых переменным нагрузкам, с учетом жесткости элементов сопряжения. Результаты расчёта позволяют сделать следующие выводы:
- С помощью имитационного моделирования выявлена закономерность влияния параметров волнистости и нагрузки на оценку нормальной контактной жесткости плоского стыка.
- Проведен анализ и предложена фрактальная модель контактного взаимодействия, позволившая определить нормальную контактную жесткость шероховатого слоя. При этом модель учитывает особенность строения шероховатого слоя как фрактального объекта, при нагружении которого плоским штампом вначале имеет место пластическая деформация мелких неровностей выступа, а затем при формировании определенной площадки контакта наступает упругое состояние пятна.
- Дана оценка нормальной контактной жесткости плоского стыка при учете волнистости и шероховатости. Численный пример показал, что жесткость волнистой поверхности примерно в 30 раз больше жесткости шероховатого слоя.
1. Tihomirov V.P., Izmerov M.A. Germetichnost' metall-metallicheskih uplotnitel'nyh ustroystv // Vestnik Bryanskogo gosudarstvennogo tehnicheskogo universiteta. 2016. № 1. S. 89-99.
2. Tikhomirov V.P., Izmerov M.A. Distribution of contact spots sizes on rough surfaces // Proceedings of 2015 International Conference on Mechanical Engineering, Automation and Control Systems. 2015. S. 7414926.
3. Madzhumdar A., Bhushan B. Fraktal'naya model' uprugoplasticheskogo kontakta sherohovatyh poverhnostey // Sovremennoe mashinostroenie. Ser. B. 1991. № 6. S. 11-23.
4. Gong Y., Shen J., Liu W., Chen L. Fractal Characteristics of Mechanical Interface Contact Parameters // MATEC Web of Conferences. IFCAE-IOT. 2018. P. 1-5.