Abstract and keywords
Abstract (English):
Strong meteorological disturbances in the atmosphere, accompanied by the generation of waves and turbulence, can affect ionospheric plasma and geomagnetic field. To search for these effects, we have analyzed electromagnetic measurement data from low-orbit Swarm satellites during flights over the typhoon Vongfong 2014. We have found that there are “magnetic ripples” in the upper ionosphere that are transverse to the main geomagnetic field fluctuations of small amplitude (0.5–1.5 nT) with a predominant period of about 10 s caused by small-scale longitudinal currents. Presumably, these quasiperiodic fluctuations are produced by the satellite’s passage through the quasiperiodic ionospheric structure with a characteristic scale of ~70 km induced by the interaction of acoustic waves excited by the typhoon with the E-layer of the ionosphere. In one of the flights over the typhoon, a burst of high-frequency noise (~0.3 Hz) was observed, which can be associated with the excitation of the ionospheric Alfven resonator by atmospheric turbulence.

tropical cyclone, ionosphere, geomagnetic field, acoustic waves, Swarm satellites, longitudinal current
Publication text (PDF): Read Download

1. Aoyama T., Iyemori T., Nakanishi K. Magnetic ripples observed by Swarm satellites and their enhancement during typhoon activity. Earth, Planets Space. 2017, vol. 69, p.89. DOI: 10.1186/s40623-017-0679-2.

2. Friis-Christensen E., Lühr H., Knudsen D., Haagmans R. Swarm — an Earth observation mission investigating geospace. Advances Space Research. 2008, vol. 41, pp. 210–216. DOI: 10.1016/j.asr.2006.10.008.

3. Huang Y-N., Cheng K., Chen S-W. On the detection of acoustic-gravity waves generated by typhoon by use of real time HF Doppler frequency shift sounding system. Radio Sci. 1985, vol. 20, pp. 897–906. DOI: 10.1029/RS020i004p00897.

4. Isaev N.V., Sorokin V.M., Chmyrev V.M., Serebryakova O.N. Ionospheric electric fields related to sea storms and typhoons. Geomagnetism and Aeronomy. 2002, vol. 42, no. 5, pp. 638–643.

5. Isaev N.V., Kostin V.M., Belyaev G.G., Ovcharenko O.Ya., Trushkina E.P. Disturbances of the topside ionosphere caused by typhoons. Geomagnetism and Aeronomy. 2010, vol. 50, iss. 2, pp. 243–255. DOI: 10.1134/S001679321002012X.

6. Iyemori T., Nakanishi K., Aoyama T., Yokoyama Y., Koyama Y., Lühr H. Confirmation of existence of the small-scale field-aligned currents in middle and low latitudes and an estimate of time scale of their temporal variation. Geophys. Res. Lett. 2015, vol. 42, pp. 22–28. DOI: 10.1002/2014GL062555.

7. Leonovich A.S., Mazur V.A. Standing Alfven waves in the magnetosphere from a localized monochromatic source. J. Geophys. Res. 1999. vol. 104, pp. 2411–2420. DOI: 10.1029/ 98JA02680.

8. Luhr H., Maus S., Rother M., Cooke D. First in-situ observation of night-time F region currents with the CHAMP satellite. Geophys. Res. Lett. 2002, vol. 29, iss.10, 1489. DOI: 10.1029/ 2001GL013845.

9. Melioransky A.S. Vysypanie elektronov iz radiatsionnykh poyasov i koltsevogo toka pod vliyaniem izluchenii taifunov v severo-zapadnoi chasti Tikhogo okeana. Taifun “Maik” i moshchnyi tropicheskii shtorm “Nell” [Electron precipitation from radiation belts and ring current under the effect of typhoon emissions in the north-western part of the Pacific Ocean. Typhoon Mike and powerful tropical storm Nell]. Preprint of Space Research Institute no. 2136. Moscow, 2007, 18 p.

10. Mikhailowa G., Mikhailow Ya., Kapustina O. ULF-VLF electric fields in the external ionosphere over powerful typhoons in Pacific Ocean. Int. J. Geomag. Aeronomy. 2000, vol. 2, pp. 153–158.

11. Nakanishi K., Iyemori T., Taira K., Lühr H. Global and frequent appearance of small spatial scale field-aligned currents possibly driven by the lower atmospheric phenomena as observed by the CHAMP satellite in middle and low latitudes. Earth Planets Space. 2014, vol. 66, article number: 40. DOI: 10.1186/1880-5981-66-40.

12. Nishioka M., Tsugawa T., Kubota M., Ishii M. Concentric waves and short‐period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophys. Res. Lett. 2013, vol. 40, pp. 5581–5586. DOI: 10.1002/2013GL057963.

13. Park J., Lühr H., Stolle C., Rother M., Min K.W., Michaelis I. The characteristics of field-aligned currents associated with equatorial plasma bubbles as observed by the CHAMP satellite. Ann. Geophys. 2009, vol. 27, pp. 2685–2697. DOI: 10.5194/angeo-27-2685-2009.

14. Park J., Lühr H., Kervalishvili G., Rauberg J., Michaelis I., Stolle C., Kwak Y.-S. Nighttime magnetic field fluctuations in the topside ionosphere at midlatitudes and their relation to medium-scale traveling ionospheric disturbances: the spatial structure and scale sizes. J. Geophys. Res. 2015, vol. 120, pp. 6818–6830. DOI: 10.1002/2015JA021315.

15. Pilipenko V., Heilig B. ULF waves and transients in the topside ionosphere. Low-Frequency Waves in Space Plasmas. John Wiley & Sons, 2016, pp. 15–29. (Geophysical Monograph Ser., vol. 216). DOI: 10.1002/9781119055006.ch2.

16. Pilipenko V.A., Yumoto K., Fedorov E., Kurneva N., Menk F. Field line Alfven oscillations at low latitudes. Mem. Fac. Sci. Kyushu Univ. Ser. D: Earth Planet. Sci. 1998, vol. 30, no. 1, pp. 23–43.

17. Pokhotelov O.A., Parrot M., Pilipenko V.A., Fedorov E.N., Surkov V.V., Gladyshev V.A. Response of the ionosphere to natural and man-made acoustic sources. Ann. Geophys. 1995, vol. 13, pp. 1197–1210. DOI: 10.1007/ s00585-995-1197-2.

18. Pokhotelov O.A., Pilipenko V.A., Parrot M. Strong atmospheric disturbances as a possible origin of inner zone particle diffusion. Ann. Geophys. 1999, vol. 17, pp. 526–532. DOI: 10.1007/s00585-999-0526-2.

19. Pokrovskaya I.V., Sharkov E.A. Tropical cyclones and tropical disturbances of the World Ocean: chronology and evolution: version 4.1 (2006–2010). Moscow, Universitet Publ., 2011, 212 p.

20. Polyakova A.S., Perevalova N.P. Investigation into impact of tropical cyclones on the ionosphere using GPS sounding and NCEP/NCAR reanalysis data. Adv. Space Res. 2011, vol. 48, pp. 1196–1210. DOI: 10.1016/j.asr.2011.06.014.

21. Prasad S.S., Schneck L.J., Davies K. Ionospheric disturbances by severe tropospheric weather storms. J. Atmos. Terr. Phys. 1975, vol. 37, pp. 1357–1363. DOI: 10.1016/0021-9169(75)90128-2.

22. Raju D.G., Rao M.S., Rao B.M., Jogulu C., Rao C.P., Ramanadham R. Infrasonic oscillations in the F2 region associated with severe thunderstorms. J. Geophys. Res. 1981, vol. 86, pp. 5873–5880. DOI: 10.1029/ JA086iA07p05873.

23. Shao X.-M., Lay E.H. The origin of infrasonic ionosphere oscillations over tropospheric thunderstorms. J. Geophys. Res. 2016, vol. 121. DOI: 10.1029/2005JA011184.

24. Sorokin V.M., Isaev N.V., Yaschenko A.K., Chmyrev V.M., Hayakawa M. Strong DC electric field formation in the low latitude ionosphere over typhoons. J. Atmos. Solar-Terr. Phys. 2005, vol. 67, pp. 1269–1279. DOI: 10.1016/j.jastp.2005.06.014.

25. Stolle C., Lühr H., Rother M., Balasis G. Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J. Geophys. Res. 2006, vol. 111, A02304. DOI: 10.1029/ 2005JA011184.

26. Surkov V.V., Pokhotelov O.A., Parrot M., Fedorov E.N., Hayakawa M. Excitation of the ionospheric resonance cavity by neutral winds at middle latitudes. Ann. Geophys. 2004, vol. 22, pp. 2877–2889. DOI: 10.5194/angeo-22-2877-2004.

27. Yagova N., Heilig B., Fedorov E. Pc2-3 geomagnetic pulsations on the ground, in the ionosphere, and in the magnetosphere: MM100, CHAMP, and THEMIS observations. Ann. Geophys. 2015, vol. 33, pp. 117–128. DOI: 10.5194/angeo-33-117-2015.

28. Zakharov V.I., Pilipenko V.A., Grushin V.A., Khamidullin A.F. Impact of Typhoon Vongfong 2014 on the ionosphere and geomagnetic field according to Swarm satellite data: 1. Wave disturbances of ionospheric plasma. Solar-Terrestrial Physics. 2019, vol. 5, iss. 2, pp. 101–108. DOI: 10.12737/stp-52201914.

29. Zettergren M.D., Snively J.B. Ionospheric signatures of acoustic waves generated by transient tropospheric forcing. Geophys. Res. Lett. 2013, vol. 40, pp. 5345–5349. DOI: 10.1002/ 2013GL058018.

30. Zettergren M.D., Snively J.B. Ionospheric response to infrasonic-acoustic waves generated by natural hazard events. J. Geophys. Res. 2015, vol. 120, pp. 8002–8024. DOI: 10.1002/ 2015JA021116.

31. URL: (accessed 20 May 2019).

32. URL: (accessed 20 May 2019).

33. URL: (accessed 20 May 2019).

34. URL: (accessed 20 May 2019).

35. URL: (accessed 20 May 2019).

Login or Create
* Forgot password?