Influence of the β solar wind parameter on statistical characteristics of the Ap index in the solar activity cycle
Abstract and keywords
Abstract (English):
We have studied the effect of the β solar wind parameter (equal to the ratio of the plasma pressure to the magnetic pressure) on statistical characteristics of the Ap index reflecting the triggering behavior of the activity of Earth’s magnetosphere. The trigger effect of the dynamics of magnetospheric activity consists in the abrupt transition from the periodic mode to the chaotic mode in the solar activity cycle. It is shown that cumulative amplitude distribution functions and power spectra of the Ap index of both the periodic and chaotic modes are well approximated by power and exponential functions respectively. At the same time, the indices of power functions and the indices characterizing the slope of the Ap index spectrum differ significantly in magnitude for the periodic and chaotic modes. We have found that Ap nonlinearly depends on β for both the modes of magnetospheric dynamics. The maximum of the Ap index amplitude for periodic modes is observed when β>1; and for chaotic ones, when β<1. In almost every cycle of solar activity, the energy of the Ap index fluctuations of chaotic modes is higher than that of periodic ones. The results indicate intermittency and its associated turbulence of magnetospheric activity. The exponential character of the spectral density of the Ap index suggests that the behavior of magnetospheric activity is determined by its internal dynamics, which can be described by a finite number of deterministic equations. The trigger effect of magnetospheric activity is assumed to be due to the angle of inclination of the axis of the solar magnetic dipole to the ecliptic plane, on which the dynamics of the β parameter in the solar activity cycle depends.

magnetosphere, solar activity, Ap index, trigger mode, intermittency
Publication text (PDF): Read Download

1. Borovsky J.E., Funsten H.O. Role of solar wind turbulence in the coupling of the solar wind to the Earth’s magnetosphere. J. Geophys. Res. 2003, vol. 108, iss. A6, 1246. DOI: 10.1029/2002JA009601.

2. Burlaga L.F. Intermittent turbulence in the solar wind. J. Geophys. Res. 1991, vol. 96, pp. 5847–5851. DOI: 10.1029/ 91JA00087.

3. Chernyshov A.A., Karelsky K.V., Petrosyan A.S. Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas. Physics-Uspekhi. 2014, vol. 57, no. 5, pp. 421‒452. DOI: 10.3367/UFNe.0184.201405a.0457.

4. D’Amicis R., Bruno R., Bavassano B. Geomagnetic activity driven by solar wind turbulence. Adv. Space Res. 2010, vol. 46, iss. 4, pp. 514–520. DOI: 10.1016/j.asr.2009.08.031.

5. Holappa L., Mursula K., Asikainen T. A new method to estimate annual solar wind parameters and contributions of different solar wind structures to geomagnetic activity. J. Geophys. Res.: Space Physics. 2014, vol. 119, pp. 9407–9418. DOI: 10.1002/2014JA020599.

6. Horsthemke W., Lefever R. Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology. Berlin, Heidelberg, Springer-Verlag, 1984, 322 p. (Springer Series in Synergetics, vol. 15.).

7. Johnson J.R., Wing S. A solar cycle dependence of nonlinearity in magnetospheric activity. J. Geophys. Res. 2005, vol. 110, A04211. DOI: 10.1029/2004JA010638.

8. Kurazhkovskaya N.A., Klain B.I. Effect of geomagnetic activity, solar wind and parameters of interplanetary magnetic field on regularities in intermittency of Pi2 geomagnetic pulsations. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2015, vol. 1, iss. 3, pp. 11‒20. (In Russian). DOI: 10.12737/11551.

9. Livshits I.M., Obridko V.N. Variations of the dipole magnetic moment of the Sun during the solar activity cycle. Astronomy Reports. 2006, vol. 50, iss. 11, pp. 926‒935. DOI: 10.1134/S1063772906110060.

10. Malinetsky G.G., Potapov A.B. Sovremennye problemy nelineinoi dinamiki [Current Problems in Nonlinear Dynamics]. Moscow, Editorial URSS, 2000, 335 p. (In Russian).

11. Marsch E., Tu C.-Y. Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind. Nonlin. Processes Geophys. 1997, vol. 4, pp. 101–124.

12. Ohtomo N., Tokiwano K., Tanaka Y, Sumi A., Terach S. Exponential characteristics of power spectral densities caused by chaotic phenomena. J. Phys. Soc. Japan. 1995, vol. 64, no. 4, pp. 1104‒1113.

13. Riazantseva M.O., Zastenker G.N. Intermittency of solar wind density fluctuations and its relation to sharp density changes. Cosmic Res. 2008, vol. 46, no. 1, pp. 1–7. DOI: 10.1134/ S0010952508010012.

14. Schreiber H. On the periodic variations of geomagnetic activity indices Ap and ap. Ann. Geophysicae. 1998, vol. 16, pp. 510–517.

15. Sigeti D.E. Exponential decay of power spectra at high frequency and positive Lyapunov exponents. Physica D. 1995, vol. 82, iss. 1–2, pp. 136‒153. DOI: 10.1016/0167-2789(94)00225-F.

16. Sigeti D., Horsthemke W. High-frequency power spectra for systems subject to noise. Phys. Rev. A. 1987, vol. 35, no. 5, pp. 2276‒2282. DOI: 10.1103/physreva.35.2276.

17. Sokolov I.V., van der Holst B., Oran R., Downs C., Roussev I.I., Jin M., Manchester IV W.B., Evans R.M., Gombosi T.I. Magnetohydrodynamic waves and coronal heating: unifying empirical and MHD turbulence models. Astrophys. J. 2013, vol. 764, no. 1, 13 p. DOI: 10.1088/0004-637X/764/1/23.

18. Valsakumar M.C., Satyanarayana S.V.M., Sridhar V. Signature of chaos in power spectrum. Pramana ‒ journal of physics. 1997, vol. 48, no. 1, pp. 69‒85. DOI: 10.1007/BF02845623.

19. Veselovsky I.S., Dmitriev A.V., Suvorova A.V. Algebra and statistics of the solar wind. Cosmic Res. 2010, vol. 48, iss. 2, pp. 113‒128. DOI: 10.1134/S0010952510020012.

20. Vӧrӧs Z., Jankovicová D., Kovács P. Scaling and singularity characteristics of solar wind and magnetospheric fluctuations. Nonlin. Processes Geophys. 2002, vol. 9, pp. 149–162.

21. Webb D.F., Crooker N.U., Plunkett S.P., St. Cyr O.C. The solar sources of geoeffective structure. Space Weather. 2001, pp. 123‒141. (AGU Geophys. Monogr., vol. 125). DOI: 10.1029/GM125p0123.

22. Xu F., Borovsky J.E. A new four-plasma categorization scheme for the solar wind. J. Geophys. Res.: Space Phys. 2015, vol. 120, pp. 70–100. DOI: 10.1002/2014JA020412.

23. Yermolaev Yu.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Yu. Catalog of large-scale solar wind phenomena during 1976–2000. Cosmic Res. 2009, vol. 47, no. 2, pp. 81–94. DOI: 10.1134/S0010952509020014.

24. Yordanova E., Balogh A., Noullez A., von Steiger R. Turbulence and intermittency in the heliospheric magnetic field in fast and slow solar wind. J. Geophys. Res. 2009, vol. 114, A08101. DOI: 10.1029/2009JA014067.

25. Zotov O.D., Klain B.I. The trigger mode in the dynamics of the magnetosphere. Materialy IV Vserossiskoi konferentsii s mezhdunarodnym uchastiem “Triggernye efecty v geosistemakh” [Proc. of the IV All-Russian Conference with International Participation “Trigger Effects in Geosystems”. (Moscow, June 6–9, 2017)]. Moscow, GEOS Publ., 2017, pp. 442‒449. (In Russian).

26. Zotov O.D., Klain B.I., Kurazhkovskaya N.A. Stochastic resonance in the Earth’s magnetosphere dynamics. Proc. 7th International Conference “Problems of Geocosmos”. St. Petersburg, May 26–30, 2008. St. Petersburg, 2008, pp. 360‒364.

27. Zotov O.D., Klain B.I., Kurazhkovskaya N.A. Peculiarities of the dynamics of the magnetosphere in the solar activity cycle. Materialy 12 mezhdunarodnoi shkoly-konferentsii “Problemy geokosmosa”. [Proc. of the 12th International School Conference “Problems of Geospace”. St. Petersburg, Peterhof, October 8–12, 2018]. St. Petersburg, VVM Publ., 2018, pp. 320–325. (In Russian).

28. URL: (accessed April 16, 2019).

29. URL: http://swdcwww. (accessed May 15, 2019).

30. URL: (accessed May 15, 2019).

Login or Create
* Forgot password?