Abstract and keywords
Abstract (English):
We propose a project of the meter wavelength range solar spectropolarimeter designed for a ground-based network developing for space weather forecast. The Software-Defined Radio (SDR) solution is chosen to meet such instrument network requirements as specification identity, low cost, possibility of controlling and transmitting data remotely via the Internet. Along with these requirements, the proposed SDR solution allows us to measure Stokes I and V easily, which contrasts the proposed instrument with e-CALLISTO network spectropolarimeters, most of which can record only one linear polarization. Deployment of such instruments at various longitudes will allow continuous observation of type II bursts, often related to coronal mass ejections (CMEs) — the most geoeffective solar activity events that affect the space weather significantly.

space weather, solar radio emission, dynamic spectrum
Publication text (PDF): Read Download

1. Akeela R., Dezfouli B. Software-defined Radios: Architecture, State-of-the-art, and Challenges, 2018 // Arxiv. URL: (accessed 30 September 2019).

2. Benz A.O., Monstein C, Meyer H. Callisto A new concept for solar radio spectrometers. Solar Phys. 2005, vol. 226, iss. 1, pp. 143–151.

3. Benz A.O., Monstein C., Meyer H., P.K. Manoharan, R. Ramesh, A. Altyntsev, A. Lara, J. Paez, K.-S. Cho. A world-wide net of Solar Radio Spectrometers: e-CALLISTO. Earth Moon and Planets. 2009, vol. 104, iss. 1-4, pp. 277–285. DOI: 10.1007/s11038-008-9267-6.

4. Bougeret J.-L., Kaiser M.L., Kellogg P.J., Manning R., Goetz K., Monson S.J., Monge N., Friel L., Meetre C.A., Perche C., Sitruk L., Hoang S. Waves: the radio and plasma wave investigation on the Wind spacecraft. Space Sci. Rev. 1995, vol. 71, iss. 1-4, pp. 231–263.

5. Bougeret J.L., Goetz K., Kaiser M.L., Bale S.D., Kellogg P.J., Maksimovic M., et al. S/WAVES: the radio and plasma wave investigation on the STEREO Mission. Space Sci. Rev. 2008, vol. 136, iss. 1-4, pp. 487–528.

6. Bouratzis C., Hillaris A., Alissandrakis C.E., Preka-Papadema P., Moussas X., Caroubalos C., Tsitsipis P., Kontogeorgos A. Astron. Astrophys. 2019, vol. 625, A58, DOI: 10.1051/0004-6361/201834792.

7. Chernov G.P. Solar radio bursts with drifting stripes in emission and absorption. Space Sci. Rev. 2006, vol. 127, pp. 195–326.

8. Cho K.-S., Gopalswamy N., Kwon R.-Y., Kim R.-S., Yashiro S. A high-frequency type II solar radio burst associated with the 2011 February 13 coronal mass ejection. Astrophys. J. 2013, vol. 765, no. 148, 9 p. DOI: 10.1088/0004-637X/765/2/148.

9. Das K., Roy A.L., Keller R., Tuccari G. Conversion from linear to circular polarization in FPGA. Astron. Astrophys. 2010, vol. 509, 11 p. DOI: 10.1051/0004-6361/200913212.

10. Dillinger M., Madani K., Alonistioti N. Software defined radio: architectures, systems, and functions. John Wiley & Sons Ltd, 2003. 456 p.

11. Dorovskyy V.V., Melnik V.N., Konovalenko A.A., Brazhenko A.I., Panchenko M., Poedts S., Mykhaylov V.A., Fine and superfine structure of decameter-hectometer type II burst on 2011 June 7. Solar Phys. 2015, vol. 290, iss. 7, pp. 2031–2042. DOI: 10.1007/s11207-015-0725-9.

12. Fleishman G.D., Melnikov V.F. Millisecond solar radio spikes. Uspekhi fizicheskikh nauk [Physics-Uspekhi]. 1998. vol. 41, no. 12, pp. 1157–1189. DOI: 10.1070/PU1998v041 n12ABEH000510.

13. Grechnev V.V., Uralov A.M., Chertok I.M., Kuzmenko I.V., Afanasyev A.N., Meshalkina N.S., Kalashnikov S.S., Kubo Y. Coronal shock waves, EUV waves, and their relation to CMEs. I. Reconciliation of “EIT waves”, type II radio bursts, and leading edges of CMEs. Solar Phys. 2011, vol. 273, iss. 2, pp. 433–460. DOI: 10.1007/s11207-011-9780-z.

14. Gubin A.V., Lesovoi S.V. SSRT digital broadband correlator. Vestnik IrGTU [Proc. of Irkutsk State Technical University]. 2012, no. 1, p. 132. (In Russian).

15. Iwai K., Tsuchiya F., Morioka A., Misawa H. IPRT/AMATERAS: a new metric spectrum observation system for solar radio bursts. Solar Phys. 2013, vol. 277, iss. 2, pp. 447–457.

16. Payne-Scott R., Little A.G. The position and movement on the solar disk of sources of radiation at a frequency of 97 Mc/s. II. Noise storms. Australian J. Sci. Res. A. 1951, vol. 4, p. 508.

17. Podlesnyi A.V. A SDR chirp receiver. Mezhdunarodnaya Baikal’skaya molodezhnaya nauchnaya shkola po fundamental’noi fizike [Baikal Young Scientists’ International School on Fundamental Physics]. 2017, pp. 200–2002. (In Russian).

18. Sabater J., Johnston S. Highlights on Spanish Astrophysics X. Proc. XIII Scientific Meeting of the Spanish Astronomical Society. July 16–20, 2018, Salamanca, Spain. 2019, pp. 663–663.

19. Tingay S.J., Goeke R., Bowman J.D., Emrich D., Ord S.M., Mitchell D.A., et al. The Murchison widefield array: the square kilometre array precursor at low radio frequencies. Publ. of the Astron. Soc. of Australia. 2013, vol. 30, id. e007, 21 p.

20. van Haarlem M.P., Wise M.W., Gunst A.W., Heald G., McKean J.P., Hessels J.W.T. LOFAR: the LOw-Frequency Array. Astron. Astrophys. 2013, vol. 556, id.A2, 53 p.

21. URL: (accessed 30 September 2019).

22. URL: (accessed 30 September 2019).

23. URL: (accessed 30 September 2019).

24. URL: gavana.pdf (accessed 30 September 2019).

25. URL: (accessed 30 September 2019).

26. URL: using-model-based-design-sdr-1.html (accessed 30 September 2019).

27. URL: arradio (accessed 30 September 2019).

28. URL: Standard (accessed 30 September 2019).

29. URL: (accessed 30 September 2019).

30. URL: mirror-mirror-on-the-wall-understanding-image-rejection-and-its-impact-on-desired-signals.html (accessed 30 September 2019).

31. URL: (accessed 30 September 2019).

Login or Create
* Forgot password?