Russian Federation
Moskva, Moscow, Russian Federation
Russian Federation
Previously, we developed a constructive method for modeling surfaces of rotation with axes, which were second-order curves such as circle, ellipse, parabola and hyperbola [1]. We also described the principle of constructing a mathematical model [23] corresponding to this constructive technique [2], and expressed the method in mathematical form. In this paper, we applied the previously developed mathematical model that allows us to determine the trajectory of rotation of a point around an elliptical axis to some special cases of the location of this point and identified the features of each of them. We applied the previously accepted terminology and the system of designating points, straight and curved lines involved in the search for circular trajectories of rotation of points. We analyzed the cases of the location of the generating point on the coordinate axes. We determined in mathematical form the trajectory of the point located in these positions. This entry is represented as systems of parametrically given equations. The article also describes a step-by-step algorithm used to find the equation of a circle, which is the trajectory of rotation of a point around an elliptic axis. We applied this algorithm to various positions of the generating point relative to the elliptic axis foci. We applied the previously developed criteria for selecting near and far centers of rotation relative to one of the focuses of the ellipse. The results of these mathematical studies will be used in the future to create a computer program capable of generating digital 3D-models of surfaces formed by the rotation of arbitrary sets forming points around the curves of the axes of the second order.
rotation about curve, surface of revolution, rotation method, line of rotation, mathematical description of rotation
1. Beglov I.A. Metod vrashcheniya geometricheskih ob"ektov vokrug krivolinejnoj osi [The method of rotation of geometric objects around a curved axis]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 3, pp. 45-50. DOI:https://doi.org/10.12737/article_59bfa4eb0bf488.99866490. (in Russian)
2. Beglov I.A. Rustamyan V.V. Antonova I.V. Matematicheskoe opisanie metoda vrashcheniya tochki vokrug krivolinejnoj osi vtorogo poryadka [A mathematical description of the method of rotation of a point around a curvilinear axis of the second order]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 6, I. 4, pp. 39-46. DOI:https://doi.org/10.12737/article_5c21f6e832b4d2.25216268. (in Russian)
3. Beklemishev D.V. Kurs analiticheskoj geometrii i linejnoj algebry [Course of analytic geometry and linear algebra]. Moscow: Fizmatlit Publ., 2009. 320 p. (in Russian)
4. Bermant A.F. Geometricheskij spravochnik po matematike (Atlas krivyh) [Geometric Mathematics Reference (Atlas of Curves)]. Moscow: ONGIZ NKTP Publ., 1937. 209 p. (in Russian)
5. Vygodskij M.Ya. Spravochnik po elementarnoj matematike [Handbook of elementary mathematics]. Moscow: ACT: Astrel' Publ., 2001. 509 p. (in Russian)
6. Vyshnepol'skij V.I., Kirshanov K.A., Egiazaryan K.T. Geometricheskie mesta tochek, ravnootstoyashchih ot dvuh zadannyh geometricheskih figur [Geometric places of points equally spaced from two given geometric shapes]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 6, I. 4, pp. 3-19. DOI:https://doi.org/10.12737/article_5c21f207bfd6e4.78537377. (in Russian)
7. Girsh A. G. Fokusy algebraicheskih krivyh [Foci of algebraic curves]. Geometriya i grafika [Geometry and Graphics]. 2015, V. 3, I. 3, pp. 4-17. DOI:https://doi.org/10.12737/14415. (in Russian)
8. Gryaznov Ya.A. Otsek kanalovoj poverhnosti kak obraz cilindra v rassloyaemom obrazovanii [The compartment of the channel surface as an image of a cylinder in an exfoliating formation]. Geometriya i grafika [Geometry and Graphics]. 2013, V. 1, I. 3, pp. 17-19. - DOI:https://doi.org/10.12737/6518. (in Russian)
9. Zhiharev L.A. Obobshchenie na trekhmernoe prostranstvo fraktalov Pifagora i Koha [Generalization to the three-dimensional space of the Pythagorean and Koch fractals]. Geometriya i grafika [Geometry and Graphics]. 2015, V. 3, I. 3, pp. 24-37. DOI:https://doi.org/10.12737/14417. (in Russian)
10. Zhiharev L.A. Otrazhenie ot krivolinejnyh zerkal v ploskosti [Reflection from curved mirrors in the plane]. Geometriya i grafika [Geometry and Graphics]. 2019, V. 7, I. 1, pp. 46-54. DOI:https://doi.org/10.12737/article_5c9203adb22641.01479568. (in Russian)
11. Zhiharev L.A. Fraktaly v trekhmernom prostranstve. I-fraktaly [Fractals in three-dimensional space. I-fractals]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 3, pp. 51-66. - DOI:https://doi.org/10.12737/article_59bfa55ec01b38.55497926. (in Russian)
12. Zhiharev L.A. Fraktal'nye razmernosti [Fractal dimensions]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 3, pp. 33-48. - DOI:https://doi.org/10.12737/article_5bc45918192362.77856682. (in Russian)
13. Ivanov G.S. Nachertatel'naya geometriya [Descriptive geometry]. Moscow: FGBOU VPO MGUL Publ., 2012. 340 p. (in Russian)
14. Ivanova E.E. Differencial'noe ischislenie funkcij odnogo peremennogo [Differential calculus of functions of one variable]. Moscow: MGTU im. N.E. Baumana Publ., 1998. 407p. (in Russian)
15. Il'in V.A. Osnovy matematicheskogo analiza [Fundamentals of Mathematical Analysis]. Moscow: Nauka Publ., 1982. 616 p. (in Russian)
16. Kanatnikov A.N. Analiticheskaya geometriya [Analytic geometry]. Moscow: MGTU im. N.E. Baumana Publ., 1998. 387 p. (in Russian)
17. Kanatnikov A.N. Linejnaya algebra [Linear algebra]. Moscow: MGTU im. N.E. Baumana Publ., 1998. 335 p. (in Russian)
18. Korn G. Spravochnik po matematike [Handbook of mathematics]. Moscow: Nauka Publ., 1984. 831 p. (in Russian)
19. Kurosh A.G. Kurs vysshej algebry [The course of higher algebra]. Moscow: Nauka Publ., 1975. 431 p. (in Russian)
20. Malugin V.A. Matematika dlya ekonomistov. Linejnaya algebra [Mathematics for economists. Linear Algebra]. Moscow: Eksmo Publ., 2006. 216 p. (in Russian)
21. Morozova V.D. Vvedenie v analiz [Introduction to analysis]. Moscow: MGTU im. N.E. Baumana Publ., 1996. 404. (in Russian)
22. Piskunov N.S. Differencial'noe i integral'noe ischisleniya [Differential and integral calculus]. Moscow: Nauka Publ., 1985. 429 p. (in Russian)
23. Sal'kov N.A. Nachertatel'naya geometriya - baza dlya geometrii analiticheskoj [Descriptive geometry - the basis for analytic geometry]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 1, pp. 44-54. - DOI:https://doi.org/10.12737/18057. (in Russian)
24. Sal'kov N.A. Svojstva ciklid Dyupena i ih primenenie [Properties of Dupin cyclide and their application]. Geometriya i grafika [Geometry and Graphics]. 2015, V. 3, I. 1, pp. 16-25. - DOI:https://doi.org/10.12737/10454. (in Russian)
25. Sal'kov N.A. Svojstva ciklid Dyupena i ih primenenie [Properties of Dupin cyclide and their application]. Geometriya i grafika [Geometry and Graphics]. 2015, V. 3, I. 2, pp. 9-22. - DOI:https://doi.org/10.12737/12164. (in Russian)
26. Sal'kov N.A. Svojstva ciklid Dyupena i ih primenenie [Properties of Dupin cyclide and their application]. Geometriya i grafika [Geometry and Graphics]. 2015, V. 3, I. 4, pp. 3-14. - DOI:https://doi.org/10.12737/17345. (in Russian)
27. Sal'kov N.A. Svojstva ciklid Dyupena i ih primenenie [Properties of Dupin cyclide and their application]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 1, pp. 21-33. - DOI:https://doi.org/10.12737/18055. (in Russian)
28. Sal'kov N.A. Ciklida Dyupena i krivye vtorogo poryadka [Dupin Cyclide and second-order curves]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 2, pp. 19-28. - DOI:https://doi.org/10.12737/19829. (in Russian)
29. Sal'kov N. A. Ellips: kasatel'naya i normal' [Ellipse: tangent and normal]. Geometriya i grafika [Geometry and Graphics]. 2013, V. 1, I. 1, pp. 35-37. - DOI:https://doi.org/10.12737/470. (in Russian)
30. Fihtengol'c G.M. Osnovy matematicheskogo analiza [Fundamentals of Mathematical Analysis]. Moscow: Lan' Publ., 2006. 440 p. (in Russian)