IMAGINARY POINTS IN CARTESIAN COORDINATE SYSTEM
Abstract and keywords
Abstract (English):
Geometric models are considered that allow symbolic representation of imaginary points on a real Cartesian coordinate plane XY. The models are based on the fact that through every pair of imaginary conjugate points A~B with complex coordinates x = a ± jb, y = c ± jd one unique real line m passes. For the image of imaginary points, it is proposed to use the graphic symbol m{OL} consisting of the line m passing through the imaginary points, the center O of the elliptic involution σ with imaginary double points A~B on the line m, and the Laguerre point L, from which the corresponding points involutions σ are projected by an orthogonal pencil of lines. According to A.G. Hirsch, the symbol m{OL} is called the marker of imaginary conjugate points A~B. A theorem is proved that establishes a one-to-one correspondence between the real Cartesian coordinates of the points O, L of the marker, and the complex Cartesian coordinates of the pair of imaginary conjugate points represented by this marker. The proved theorem allows us to solve both the direct problem (the construction of a marker depicting these imaginary points) and the inverse problem (the determination of the Cartesian coordinates of imaginary points represented by the marker). A graphical algorithm for constructing a circle passing through a real point and through a pair of imaginary conjugate points is proposed. An example of the graph-analytical determination of the Cartesian coordinates of imaginary points of intersection of two conics that have no common real points is considered.

Keywords:
complex Cartesian coordinates, elliptic involution, polarity, orthogonal circles, bunch of circles, circumference zero radius
References

1. Byushgens S.S. Analiticheskaya geometriya. Pervyj koncentr [Analytic geometry], Moscow-Leningrad, Gosudarstvennoe uchebno-pedagogicheskoe izdatel'stvo Publ., 1934, 237 p. (in Russian)

2. Vol'berg O.A. Osnovnye idei proektivnoy geometrii [The Basic Ideas of Projective Geometry], Moscow-Leningrad, Gosudarstvennoe uchebno-pedagogicheskoe izdatel'stvo Publ., 1949, 188 p. (in Russian)

3. Hirsh A.G. Naglyadnaya mnimaya geometriya [Visual imaginary geometry]. Moscow, LLC "Mask" Publ., 2008, 216 p. (in Russian)

4. Hirsh A.G. Kompleksnaya geometriya - evklidova i psevdoevklidova [Complex geometry - Euclidean and pseudo-Euclidean]. Moscow, LLC "Mask" Publ., 2013, 216 p. (in Russian)

5. Hirsh A.G. Nachala kompleksnoj geometrii. Sbornik zadach po kompleksnoj geometrii s resheniyami. CHast' I ─ 2D [The beginnings of complex geometry. Collection of problems on complex geometry with solutions. Part I - 2D], Kassel, Germany, 2012, 191 p. (in Russian)

6. Hirsh A.G. Nachala kompleksnoj geometrii. Izbrannye zadachi kompleksnoj geometrii s resheniyami. CHast' II ─ 3D [The beginnings of complex geometry. Selected problems of complex geometry with solutions. Part II ─ 3D]. Kassel, Germany, 2014, 112 p. (in Russian)

7. Hirsh A.G., Korotkiy V.A. Graficheskie algoritmy rekonstrukcii krivoj vtorogo poryadka, zadannoj mnimymi elementami [Graphic Reconstruction Algorithms of the Second-Order Curve, given by the Imaginary Elements]. Geometriya i grafika [Geometry and graphics], 2016, V. 4, I. 4, pp. 19-30 (in Russian)

8. Hirsh A.G. Mnimosti v geometrii [Imagination in geometry]. Geometriya i grafika [Geometry and graphics], 2014. V. 2. I. 2: p. 3-8 (in Russian)

9. Hirsh A.G. Fokusy algebraicheskih krivyh [Foci of algebraic curves]. Geometriya i grafika [Geometry and graphics], 2015, V. 3, I. 3, pp. 4-17. (in Russian)

10. Glagolev N.A. Proektivnaya geometriya [Projective Geometry]. Moscow, Vysshaya Shkola Publ., 1963, 344 p. (in Russian)

11. Ivanov G. S. O zadachah nachertatel'noj geometrii s mnimymi resheniyami [On problems of descriptive geometry with imaginary solutions]. Geometriya i grafika [Geometry and graphics], 2015. V. 3. I. 2, pp. 3-8. (in Russian)

12. Klejn F. Vysshaya geometriya [Higher Geometry], Moscow, URSS Publ., 2004. 400 p. (in Russian)

13. Klejn F. Elementarnaya matematika s tochki zreniya vysshej [Elementary Mathematics from the Point of View of Higher, Vol. 2: Geometry]. Moscow, Nauka Publ., 1987, 416 p. (in Russian)

14. Korotkiy V.A. Preobrazovanie puchka konik v puchok okruzhnostej [Conic beam transformation into a bundle of circles]. Sovershenstvovanie podgotovki uchashchihsya i studentov v oblasti grafiki, konstruirovaniya i standartizacii [Improving the training of students in the field of graphics, design and standardization]. Saratov: SGTU Publ., 2014, pp. 53-57. (in Russian)

15. Korotkiy V.A. Komp'yuternaya vizualizaciya krivoj vtorogo poryadka, prohodyashchej cherez mnimye tochki i kasayushchejsya mnimyh pryamyh [Computer Visualization of a Curve of the Second Order passing through Imaginary Points and touching Imaginary Lines]. Nauchnaya vizualizaciya [Scientific visualization]. 2018, V. 10, I. 1, pp. 56-68. Available at: http://sv-journal.org. (in Russian)

16. Peklich V.A. Mnimaya nachertatel'naya geometriya [Imaginary Descriptive Geometry]. Moscow, ASV Publ., 2007. 104 p. (in Russian)

17. Sal´kov N. A. Nachertatel'naya geometriya - baza dlya geometrii analiticheskoj [Descriptive Geometry As the Basis for Analytical Geometry]. Geometriya i grafika [Geometry and graphics], 2016. V. 4, I. 1, pp. 44-54. (in Russian). DOI:https://doi.org/10.12737/18057

Login or Create
* Forgot password?