PARQUETTING THE SURFACE OF A PARABOLIC CONCENTRATOR OF A SOLAR PHOTOVOLTAIC THERMAL MODULE ACCORDING TO GIVEN DIFFERENTIAL- GEOMETRIC REQUIREMENTS
Abstract and keywords
Abstract (English):
The article discusses the geometric aspects of the design and creation of parabolic-type solar radiation concentrators. Practical methods of geometric design and manufacturing of concentrators of this kind are presented. Parabolic type concentrator is the main part of the solar photovoltaic thermal installation. Its effectiveness depends on the quality factors of the geometric shaping of the working surface, composed of a set of parquet components, linked to each other on the basis of differential geometric requirements. The distribution of illumination in the focal spot of such a concentrator, made by parquet based on the constructive connection of individual elements, makes it possible to obtain acceptable results. However, there is considerable potential for improving performance by providing a smoother and more uniform illumination of the photodetector. To ensure the specified accuracy and smoothness of the rim of the surface at the stages of designing and manufacturing the device, two methods are proposed: orthogonal and fan-shaped geometric parquetting of the surface of a parabolic concentrator with the ability to pre-set the required shape accuracy for given rim geometrical characteristics. Parquetting with given differential requirements for the surface, in turn, provides for two methods for calculating parquet elements: first, by the minimum number of curvilinear elements followed by stitching, taking into account the differential conditions; the second is based on the maximum number of flat elements, the multiplicity of which provides acceptable smooth surface properties. In this paper, we consider the first method for cases of orthogonal and fan parquet. On the example of a parabolic concentrator, the implementation of the considered method is presented, which provides for the possibility of controlling the geometric smoothness of the concentrator surface in order to ensure optimal distribution of concentrated solar radiation in the focal region. The output characteristics of photovoltaic and thermal converters of solar energy, which are in the focus of such a concentrator, become optimal, and the installation itself will operate in nominal mode.

Keywords:
geometric shaping, surface accuracy setting, orthogonal parquetting, solar radiation concentrator, photovoltaic thermal module, shaping error, differential-geometric conditions
References

1. Aleksanyan A.M., Afyan V.V., Batikyan G.A., Vartanyan A.V. Razrabotka krupnogabaritnyh paraboloidnyh facetnyh koncentratorov [Development of large-sized paraboloid facet concentrators]. Heliotekhnika [Geliotekhnika]. 1988, I. 3, pp 24-28. (in Russian)

2. Alimov A.K., Alavutdinov J.N. et al. Opyt sozdaniya koncentratorov dlya modul'nyh fotoehlektricheskih ustanovok [Experience in creating concentrators for modular photovoltaic plants]. Koncentratory solnechnogo izlucheniya dlya fotoehlektricheskih ustanovok [Solar concentrators for photovoltaic plants]. L .: Energoatomizdat. 1986. pp. 17-18. (in Russian)

3. Andreev V.M., Grilikhes V.A., Rumyantsev V.D. Fotoehlektricheskoe preobrazovanie koncentrirovannogo solnechnogo izlucheniya [Photoelectric conversion of concentrated solar radiation]. Leningrad: Science. 1989. 310 p. (in Russian)

4. Weinberg V.B. Optika v ustanovkah dlya ispol'zovaniya solnechnoj ehnergii [Optics in installations for the use of solar energy]. L .: Oborongiz, 1959, 236 p. (in Russian)

5. Weinberg V.P. Solnechnye dvigateli, perspektivy geliotekhniki [Solar engines, the prospects of solar technology]. Vestnik znaniya [Bulletin of knowledge]. 1928, I. 4. pp. 206-220. (in Russian)

6. Voloshinov D.V. Edinyj konstruktivnyj algoritm postroeniya fokusov krivyh vtorogo poryadka [Unified constructive algorithm for constructing focuses of second order curves]. Geometriya i grafika [Geometry and Graphics]. V. 6, I. 2, pp. 47-54. (in Russian). Available at: https://doi.org/10.12737/article_5b559f018f85a7.77112269.

7. Grafsky O.A, Ponomarchuk Yu.V., Surits V.V. Osobennosti svojstv paraboly pri ee modelirovanii [Features of the properties of a parabola when modeling it]. Geometriya i grafika [Geometry and Graphics]. V. 6, I. 2, pp 63-77. (in Russian). Available at: https://doi.org/10.12737/article_5b55a16b547678.01517798.

8. Zahidov R.A., Umarov G.Y., Weiner A.A. Teoriya i raschyot geliotekhnicheskih koncentriruyushchih system [Theory and calculation of solar concentrating systems]. Tashkent: FAN, 1977, p. 144. (in Russian)

9. Ivanov G.S. Konstruirovanie odnomernyh obvodov, prinadlezhashchih poverhnostyam, putem ih otobrazheniya na ploskost' [Designing one-dimensional contours belonging to surfaces by mapping them onto a plane]. Geometriya i grafika [Geometry and Graphics]. V. 6, I. 1, pp. 3-9. (in Russian). Available at: https://doi.org/10.12737/article_5ad07ed61bc114.52669586.

10. Ivanov G.S., Dmitrieva I.M. Nelinejnye formy v inzhenernoj grafike [Nonlinear forms in engineering graphics]. Geometriya i grafika [Geometry and Graphics]. V. 4, I. 4, pp. 4-12. (in Russian). Available at: https://doi.org/10.12737/article_5953f295744f77.58727642.

11. Korotky V.A., Usmanova E.A. Krivye vtorogo poryadka na ehkrane komp'yutera [Curves of the second order on the computer screen]. Geometriya i grafika [Geometry and Graphics]. V. 6, I. 2, pp. 100-112. (in Russian). Available at: https://doi.org/10.12737/article_5b55a829cee6c0.74112002.

12. Kuprikov M.Yu., Markin L.V. Geometricheskie aspekty avtomatizirovannoj komponovki letatel'nyh apparatov [Geometric aspects of the automated layout of aircraft]. Geometriya i grafika [Geometry and Graphics]. V. 6, I. 3, pp. 69-87. (in Russian). Available at: https://doi.org/10.12737/article_5bc45cbccfbe67.89281424.

13. Mayorov V.A., Panchenko V.A. Issledovanie parabolotoricheskogo koncentratora v ustanovke s solnechnymi ehlementami [Study of a parabolotoroid concentrator in an installation with solar cells]. Materialy vos'moj vserossijskoj nauchnoj molodyozhnoj shkoly s mezhdunarodnym uchastiem (20-23.11.2012, Moskva, MGU) [Proceedings of the Eighth All-Russian Scientific Youth School with international participation (20-23.11.2012, Moscow, Moscow State University)]. Renewable energy sources. 2012, pp. 284-289. (in Russian)

14. Mayorov V.A., Panchenko V.A. Issledovanie teplovyh rezhimov raboty dvigatelya Stirlinga s paraboloidnym koncentratorom solnechnogo izlucheniya [Study of thermal operating conditions of a Stirling engine with a paraboloid solar concentrator]. Mekhanizaciya i ehlektrifikaciya sel'skogo hozyajstva [Mechanization and Electrification of Agriculture]. 2013, № 1. pp. 28-29. (in Russian)

15. Mayorov V.A., Panchenko V.A. Issledovanie harakteristik solnechnogo koncentratora v ustanovke s dvigatelem Stirlinga [Study of the characteristics of a solar concentrator in an installation with a Stirling engine]. EHnergetik [Energetik]. 2013, I. 2, pp. 40-42. (in Russian)

16. Mayorov V.A., Panchenko V.A., Strebkov D.S. RF patent for invention № 2522376. Solnechnyj modul' s parabolotoricheskim koncentratorom v sostave s dvigatelem Stirlinga [Solar module with a parabolotoroid concentrator composed with a Stirling engine]. (in Russian)

17. Mayorov V.A., Panchenko V.A., Strebkov D.S. RF patent for invention № 2543256. Solnechnyj teplofotoehlektricheskij modul' s parabolotoricheskim koncentratorom [Solar photovoltaic thermal module with parabolotoroid concentrator]. (in Russian)

18. Mayorov V.A., Panchenko V.A., Strebkov D.S. RF patent for the invention № 2505755. Solnechnyj fotoehlektricheskij modul' s parabolotoricheskim koncentratorom [Solar photovoltaic module with a parabolotoroid concentrator]. (in Russian)

19. Nabiulin F.Kh., Buzova Z.M., Zaslavskaya G.S., Petrova NP, Kutlovskaya N.F. Metod gal'vanoplastiki v izgotovlenii parabolicheskih koncentratorov [Method of electroforming in the manufacture of parabolic concentrators]. Koncentratory solnechnoj ehnergii [Concentrators of Solar Radiation]. L .: Energy Publ., 1972. pp. 19-23. (in Russian)

20. Remontova L.V., Nesterenko L.A., Burlov V.V., Orlov N.S. 3D-modelirovanie poverhnostej 2-go poryadka [3D modeling of second-order surfaces]. Geometriya i grafika [Geometry and Graphics]. V. 4, I. 4, pp. 48-59. (in Russian). Available at: https://doi.org/10.12737/22843.

21. Salkov N.A. Geometricheskaya sostavlyayushchaya tekhnicheskih innovacij [Geometrical component of technical innovations]. Geometriya i grafika [Geometry and Graphics]. V. 6, I. 2, pp. 85-93. (in Russian). Available at: https://doi.org/10.12737/article_5b55a5163fa053.07622109.

22. Salkov N.A. Geometricheskoe modelirovanie i nachertatel'naya geometriya [Geometric modeling and descriptive geometry]. Geometriya i grafika [Geometry and Graphics]. V. 4, I. 4, pp. 31-40. (in Russian). Available at: https://doi.org/10.12737/22841.

23. Sinitsyn S.A. Zadacha sinteza geometricheskoj informacii pri optimal'nom modelirovanii gladkih differencial'nyh poverhnostej [The problem of the synthesis of geometric information in the optimal modeling of smooth differential surfaces]. Innovacii i investicii [Innovations and investments]. 2018, I. 10, p. 212. (in Russian)

24. Sinitsyn S.A. Informacionno-statisticheskij metod optimal'nogo modelirovaniya gladkih differencial'nyh poverhnostej pri iteracionnom proektirovanii tekhnicheskih ob"ektov na transporte [Information-statistical method for optimal modeling of smooth differential surfaces in the iterative design of technical objects in transport]. Moscow: Russian University of Transport Publ., 2017, 103 p. (in Russian)

25. Sinitsyn S.A. Koncepciya modelirovaniya obtekaemyh obvodov vysokoskorostnogo nazemnogo transporta [The concept of modeling streamlined contours of high-speed ground transport]. Nauka i tekhnika transporta [Science and technology of transport]. 2011, I. 3, p. 54. (in Russian)

26. Sinitsyn S.A. Formalizaciya pogreshnostej v zadachah optimizacii geometricheskih modelej [Formalization of errors in problems of optimization of geometric models]. Innovacii i investicii [Innovations and investments]. 2018, I. 11, pp. 175-180. (in Russian)

27. Strebkov D.S., Tver'yanovich E.V. Koncentratory solnechnogo izlucheniya [Concentrators of Solar Radiation]. Moscow, GNU VIESH Publ. 2007, pp. 12-30. (in Russian)

28. Abdulkadir A. Hassen and Demiss A. Amibe. Design, manufacture and experimental investigation of low cost parabolic solar cooker // ISES Solar World Congress 2011, 28 Aug.-2 Sept. Kassel, Germany, 12 p.

29. Ajay Chandak, Sunil Somani and Anurag Chandak. Development Prince - 40 solar concentrator as do it yourself (DIY) kit // ISES Solar World Congress 2011, 28 Aug.-2 Sept. Kassel, Germany, 8 p.

30. Babaev B.D., Kharchenko V., Panchenko V. & Vasant P. Materials and Methods of Thermal Energy Storage in Power Supply Systems // Renewable Energy and Power Supply Challenges for Rural Regions, 2019, 115-135, DOI:https://doi.org/10.4018/978-1-5225-9179-5.ch005.

31. Javier Diz-Bugarin1. Design and construction of a low cost offset parabolic solar concentrator for solar cooking in rural areas// ISES Solar World Congress 2011, 28 Aug.-2 Sept. Kassel, Germany, 8 p.

32. Kharchenko V., Nikitin B., Tikhonov P., Panchenko V. & Vasant P. Evaluation of the Silicon Solar Cell Modules // Intelligent Computing & Optimization. Advances in Intelligent Systems and Computing, Volume 866, Springer Nature Switzerland AG 2019. Pandian Vasant, Ivan Zelinka, Gerhard-Wilhelm Weber (Eds.): ICO 2018, 328-336. doi.org/10.1007/978-3-030-00979-3_34.

33. Kharchenko V., Panchenko V., Tikhonov P. & Vasant P. Cogenerative PV Thermal Modules of Different Design for Autonomous Heat and Electricity Supply // Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development, 2018, 86-119, DOI:https://doi.org/10.4018/978-1-5225-3867-7.ch004.

34. Panchenko V.A. Review and applications of solar modules developed and produced by GNU VIESH. Research in Agricultural Electric Engineering. Volume 2, 2014, № 3, 82-89.

35. Panchenko V., Kharchenko V. & Vasant P. Modeling of Solar Photovoltaic Thermal Modules // Intelligent Computing & Optimization. Advances in Intelligent Systems and Computing, Volume 866, Springer Nature Switzerland AG 2019. Pandian Vasant, Ivan Zelinka, Gerhard-Wilhelm Weber (Eds.): ICO 2018, 108-116, doi.org/10.1007/978-3-030-00979-3_11.

Login or Create
* Forgot password?