Abstract and keywords
Abstract (English):
The paper presents data on long-lived (~20–40 min) meteor trails. We describe a group of soliton-type meteor trails expanding at transonic speeds. Radio sounding data evidences that the latter include ~7–8 min ionization trails. We also consider one event with an ordinary shape and dynamics of meteor trails. These ordinary meteor trails are formed due to wind flows at heights of meteor glow. We describe the space-time structure of the detected meteor trails. In particular, in the November 18, 2017 event the typical size of the expanding trail area reached approximately 400 km and retained its semioval shape. The meteor trail propagated mainly in the horizontal plane at heights of ~86–91 km. We examine possible mechanisms of long-lived meteor trails propagating at transonic speeds. We estimate speed variations of meteor particles of size from 1μm to 10 mm for ~70–120 km heights during their horizontal motion. It is shown that the mode of meteor particle motion without deceleration on the typical timescale of ~10 3 s at 70–90 km heights can be realized only for large particles over 100 μm. Mechanisms and spectral composition of long-lived meteor trail glow are discussed.

long-lived meteor trail, ionization meteor trail, meteor trail glow, airglow
Publication text (PDF): Read Download

1. Astapovich I.S. Meteornye yavleniya v atmosfere Zemli [Meteor phenomena in Earth’s atmosphere]. Moscow, State Publishing House of Physical and Mathematical Literature. 1958. 650 p. (In Russian).

2. Avakyan S.V., Evlashin LS, Kovalenok V.V., Lazarev A.I., Titov V.G. Nablyudeniya polyarnikh siyanii iz kosmosa [Aurora Observations from Space]. Leningrad, Gydrometeo-izdat, 1991. 300 p. (In Russian).

3. Babadzhanov P.B. Meteory i ikh nablyudeniya [Meteors and their observation]. Moscow, Nauka Publ., 1987. 176 p. (In Russian).

4. Banks P.M., Kockarts G. Aeronomy. Part B. 1973. Academic Press. New York and London, 1973. 355 p.

5. Beletsky A.B., Gress O.G., Mikhalev A.V., Shalin A.Yu., Potapov A.S. Nightglow behavior during the 16-18 November 2001 passage of the Leonids meteor stream. Adv. Space Res. 2004, vol. 33, iss. 9, pp. 1486-1490. DOI:https://doi.org/10.1016/j.asr.2003. 05.002.

6. Brasseur G.P., Solomon S. Aeronomy of the Middle Atmosphere (Chemistry and Physics of the Stratosphere and Mesosphere). D. Reidel Publishing Company, Dordrecht, Holland, 1984. 441 p. DOI:https://doi.org/10.1002/qj.49711146917.

7. Bronstein V.A. Fizika meteornykh yavlenii [Physics of meteor phenomena]. Moscow, Nauka Publ., 1981. 416 p. (In Russian).

8. Clemesha B.R., F. de Medeiros A., Gobbi D., Takahashi H., Batista P.P., Taylor M.J. Multiple wavelength optical observations of a long-lived meteor trail. Geophys. Res. Lett. 2001, vol. 28, no. 14, pp. 2779-2782. DOI:https://doi.org/10.1029/2000GL012605.

9. Gaigerov S.S. Issledovanie srednei atmosfery [The study of the middle atmosphere (meteorology of 20-120 km altitudes)]. Abstract J. All-Russian Institute of Scientific and Technical Information. Ser. Geomagnetism and High Layers of the Atmosphere. Moscow, 1986, vol. 8, 156 p. (In Russian).

10. Grigoryan S.S., Ibodov F.S., Ibadov S.I. Physical mechanism of Chelyabinsk superbolide explosion. Solar System Res. 2013, vol. 47, no. 4, pp. 268-274. DOI:https://doi.org/10.1134/S0038094613040151.

11. Grigoryev G.I. Acoustic-gravity waves in the Earth's atmosphere (Review) // Izvestiya vuzov. Radiofizika [Radiophysics and Quantum Electronics]. 1999, vol. XLII, no. 1, pp. 3-24. (In Russian).

12. Kashcheev B.L., Lebedinets V.N., Lagutin M.F. Meteornye yavleniya v atmosfere Zemli [Meteor phenomena in Earth’s atmosphere]. Moscow, Nauka Publ., 1967. 260 p. (In Russian).

13. Kelley M.C., Gardner C., Drummond J., Armstrong T., Liu A., Chu X., et al. First observations of long-lived meteor trains with resonance lidar and other optical instruments. Geophys. Res. Lett. 2000, vol. 27, no. 13, pp. 1811-1814. DOI:https://doi.org/10.1029/1999GL011175.

14. Landau, L.D, Lifshits, E.M. Gidrodinamika. Teoreticheskaya fizika [Hydrodynamics. Theoretical Physics]. The 3rd Edition, vol. VI. Moscow, Nauka Publ., 1986. 736 p. (In Russian).

15. Mikhalev A.V. Midlatitude radiation of the Earth’s upper atmosphere under heliogeophysical disturbances. Solnechno-zemnaya fizika. [Solar-Terrestrial Physics]. 2011, iss. 17, pp. 179-183. (In Russian).

16. Mikhalev A.V., Beletsky A.B., Vasilyev R.V., Eselevich M.V., Ivanov K.I., Komarova E.S., Podlesny A.V., Podlesny S.V., Syrenova T.E. Long-lived meteor trails, formed by the explosions of large meteoroids. XVI Vserossiiskaya otkrytaya konferentsiya «Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [The 16th All-Russian Open Conference “Modern Problems of Remote Sensing of Earth from Space. Moscow, IKI RAS, November 12-16, 2018. Abstracts. P. 476. (In Russian). http://smiswww.iki. rssi.ru/d33_conf/thesisshow.aspx?page=153&thesis=6651.

17. Philip N.D, Oraevsky V.N., Blaunshteyn N.Sh., Ruzhin Y.Ya. Evolyutsiya iskusstvennykh plazmennykh neodno-rodnostei v ionosfere Zemli. The Evolution of Artificial Plasma Inhomogeneities in Earth’s Ionosphere. Kishinev, Shtiintsa Publ., 1986, 246 p. (In Russian).

18. Pinaev A.V., Kuzavov V.T., Kedrinsky V.K. The structure of shock waves in the near zone in the explosion of space charges in the air. Prikladnaya mekhanika i tekhnicheskaya fizika [Applied Mechanics and Technical Physics]. 2000, vol. 41, no. 5, pp. 81-90. (In Russian).

19. Platov Yu.V., Kulikova G.N., Chernouss S.A. Classification of gas-dust structures in the upper atmosphere associated with exhausts of rocket-engine combustion products. Space Res. 2003, vol. 41, no. 2, pp. 153-158.

20. Platov Yu.V., Chernouss S.A., Alpatov V.V. Features of optical phenomena associated with launches of solid-propellant ballistic missiles. Geomagnetizm i aeronomiya. [Geomagnetism and Aeronomy]. 2013, vol. 53, no. 2, pp. 198-203. DOI:https://doi.org/10.1134/S0016793213010155.

21. Sedov L.I. Metody podobiya i razmernosti v mekhanike. [Methods of similarity and dimension in mechanics]. Moscow, Nauka Publ., 1987, 430 p. (In Russian).

22. Silber E.A., Boslough M., Hocking W.K., Gritsevich M., Whitaker R.W. Physics of meteor generated shock waves in the Earth’s atmosphere - A review. Adv. Space Res. 2018, iss. 3, rr. 489-532. DOI:https://doi.org/10.1016/j.asr.2018.05.010.

23. Smirnov V.A. Spektry kratkovremennykh atmosfernykh svetovykh yavlenii: Meteory. [Spectra of short-term atmospheric light phenomena: Meteors]. Moscow, Fizmatlit Publ., 1994, 208 p. (In Russian).

24. Zeldovich Ya.B., Raiser Yu.P. Fizika udarnykh voln i vysokotemperaturnykh yavlenii [Physics of shock waves and high-temperature hydrodynamic phenomena]. 3rd Edition. Moscow, Fizmatlit Publ., 2008, 656 p. (In Russian).

25. Zinn J., Drummond J. Formation of parallel meteor trail pairs as associated with their buoyant rise. Adv. Space Res. 2007, vol. 39, pp. 555-561. DOI:https://doi.org/10.1016/j.asr.2006.12.007.

26. URL: http://atmos.iszf.irk.ru/ru/data/keo (accessed 20 May 2019).

27. URL: http://atmos.iszf.irk.ru/ru/data/color (accessed 20 May 2019).

28. URL: http://atmos.iszf.irk.ru/ru/data/spectr (accessed 20 May 2019).

29. URL: http://atmos.iszf.irk.ru/ru/data/sati2 (accessed 20 May 2019).

30. URL: http://atmos.iszf.irk.ru/ru/data/fpi (accessed 20 May 2019).

31. URL: http://dep1.iszf.irk.ru/CHIRP_ionogrames (accessed 20 May 2019).

Login or Create
* Forgot password?