MODELING APPROXIMATING THE 16-POINT COMPARTMENT THE RESPONSE SURFACE WITH RESPECT TO THE SOLUTION OF THE INHOMOGENEOUS HEAT EQUATION
Abstract and keywords
Abstract (English):
The paper proposes a computational method for solving differential equations of mathematical physics by approximating the desired solution using geometric objects of multidimensional space passing through predetermined points. The essence of the method is to simulate an approximating geometric object of a multidimensional affine space constructed on a regular multidimensional network of points. In this case, the response function values satisfying the solution of the original differential equation are calculated at the nodal points of the network. Modeling of approximating geometric object is carried out by means the arcs of algebraic curves passing through predetermined points. It should be noted that taking into account the boundary conditions does not require changes in the geometric algorithm or point equations. It is sufficient to use the necessary coordinates of the nodal boundary points corresponding to the boundary conditions of the solution of the differential equation. To achieve the required accuracy of the solution of differential equations, it is sufficient to compact the reference network of points. Under such conditions, it is possible to use as a single geometric object to approximate the solution of the differential equation, and composite, based on the simulation of multidimensional contours on a regular network of points of multidimensional space. A geometric classification of differential equations depending on the number of parameters determining the approximating geometric object in multidimensional space is proposed. An example of solving the inhomogeneous heat equation by means of an approximating response surface passing through 16 predetermined points is given. In this case, the required approximating compartment of the response surface passes through 3 straight lines that correspond to the boundary conditions and satisfies the solution of the original differential equation at the nodal points of the 16-point network. A comparison of the results of solving the inhomogeneous heat equation approximated by a 16-point compartment of the response surface with the reference compartment of the surface obtained by the method of separating variables is also presented.

Keywords:
16-point compartment, approximating the response surface, a geometric object, the arc of the curve, differential equation, inhomogeneous heat equation
References

1. Cottrell J.A., Hughes T.J., Bazilevs Y. Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons, Ltd. Chichester, 2009. 360 p.

2. Vuong A.-V. Adaptive Hierarchical Isogeometric Finite Element Methods. Springer Spektrum. Wiesbaden, 2012. 127 p.

3. Bakel'man I.Ya. Geometricheskie metody resheniya e'llipticheskix uravnenij [Geometric methods for solving elliptic equations]. Moscow, 1965. 340 p. (in Russian)

4. Balyuba I.G., Konopackij E.V. Konstruirovanie dug obvoda iz krivyx odnogo otnosheniya [Construction contour arcs of curves the same relationship]. Trudy 27-j Mezhdunarodnoj konferenciya po komp'yuternoj grafike i mashinnomu zreniyu «GraphiCon 2017» [Proceedings of the 27th International Conference on Computer Graphics and Computer Vision "GraphiCon 2017"]. 2017, pp. 332-334. (in Russian)

5. Balyuba I.G., Najdysh V.M. Tochechnoe ischislenie [Point calculation]. Melitopol Publ., 2015. 236 p. (in Russian)

6. Balyuba I.G. Konstruktivnaya geometriya mnogoobrazij v tochechnom ischislenii. Doct. Diss [Constructive geometry of manifolds in a point calculation. Dokt. Diss]. 1995. 227 p. (in Russian)

7. Baxvalov Yu.N. Metod mnogomernoj interpolyacii i approksimacii i ego prilozheniya [Multivariate interpolation and approximation method and its applications]. Moscow, 2007. 108 p. (in Russian)

8. Belyaev M.G. Approksimaciya mnogomernyx zavisimostej po strukturirovannym vyborkam [Approximation of a multidimensional dependency on structured samples]. Iskusstvennyj intellekt i prinyatie reshenij [Artificial Intelligence and Decision Making]. 2013, I. 3, pp. 24-39. (in Russian)

9. Blinov A.O., Fralenko V.P. Mnogomernaya approksimaciya v zadachax modelirovaniya i optimizacii [Multivariate approximation in the problems of modeling and optimization]. Avtomat. i telemex Publ., 2009, I. 4, pp. 98-109. (in Russian)

10. Butyrskij Yu., Kuvaldin I.A., Chalkin V.P. Approksimaciya mnogomernyx funkcij [Approximation of multidimensional functions]. Nauchnoe priborostroenie [Scientific instrument engineering]. 2010, V. 20, I. 2, pp. 82-92. (in Russian)

11. Bumaga A.I., Konopackij E.V., Krys'ko A.A., Chernysheva O.A. Vvedenie v matematicheskij apparat BN-ischislenie [Introduction to the mathematical apparatus of BN-calculation]. Materialy VII Mezhdunarodnoj nauchno-prakticheskoj internet-konferencii «Problemy kachestva graficheskoj podgotovki studentov v texnicheskom VUZe: tradicii i innovacii» [Proceedings of the VII International Scientific and Practical Internet Conference "Problems of the quality of graphic training of students in a technical university: traditions and innovations"]. 2017, I. 4, pp. 76-82. (in Russian)

12. Gallager R. Metod konechnyx e'lementov. Osnovy [Finite element method. Basics]. Moscow, 1984. 428 p. (in Russian)

13. Davydenko I.P. Konstruirovanie poverxnostej prostranstvennyx form metodom podvizhnogo simpleksa. Kand. Diss [Construction of surfaces of spatial forms by the method of moving simplex. Cand. Diss]. Makeyevka, 2012. 186 p. (in Russian)

14. Zadacha po uravneniyu s matematicheskoj fiziki s resheniem Neodnorodnoe uravnenie teploprovodnosti [Zadacha after uravneniyu with matematicheskoj fiziki s resheniem Neodnorodnoe uravnenie teploprovodnosti.]. Available at: https://www.matburo.ru/Examples/Files/umf_3.pdf (accessed 08 March 2019). (in Russian)

15. Zajcev V.F. Simmetrii differencial'nyx uravnenij. Formal'nye operatory [Symmetries of differential equations. Formal operators]. Izvestiya RGPU im. A.I. Gercena [Izvestia RGPU them. A.I. Herzen]. 2004, I. 8. Access point: https://cyberleninka.ru/article/n/ symmetrical-wide differential-equations-Her official statements (date accessed: 08.03.2019). (in Russian)

16. Kalitkin N.N. Chislennye metody [Numerical method]. St. Petersburg, 2011. 592 p. (in Russian)

17. Konopackij E.V. Approksimaciya geometricheskix ob"ektov s pomoshh'yu dug krivyx, proxodyashhix cherez naperyod zadannye tochki [Approximating geometric objects using arcs of curves passing through pre-defined points]. Informacionnye texnologii [Information Technology]. 2019, I. 1, V. 25, pp. 46-52. DOI:https://doi.org/10.17587/it.25.46-51. (in Russian)

18. Konopackij E.V., Krys'ko A.A., Bumaga A.I. Vychislitel'nye algoritmy modelirovaniya odnomernyx obvodov cherez k napered zadannyx tochek [Computational algorithms for modeling one-dimensional contours through k pre-defined points]. Geometriya i grafika [Geometry and graphics]. I. 3. pp. 20-32. DOI: https://doi.org/10.12737/article_5bc457ece18491. 72807735. (in Russian)

19. Konopackij E.V. Modelirovanie dug krivyx, proxodyashhix cherez napered zadannye tochki [Modeling the arcs of curves passing through specified points in advance]. Vestnik komp'yuternyx i informacionnyx texnologij [Bulletin of Computer and Information Technologies]. I. 2, pp. 30-36. DOI:https://doi.org/10.14489/vkit.2019.02.pp.030-036. (in Russian)

20. Konopackij E.V., Chernysheva O.A., Kokareva Ya.A. Modelirovanie krivolinejnogo uchastka topograficheskoj poverxnosti na neregulyarnoj seti tochek [Modeling of a curvilinear site of a topographic surface on an irregular network of points]. Vestnik komp'yuternyx i informacionnyx texnologij [Bulletin of Computer and Information Technologies]. I. 7, pp. 17-22. DOI:https://doi.org/10.14489/vkit.2018.07. (in Russian)

21. Konopackij E.V. Podxod k postroeniyu geometricheskix modelej mnogofaktornyx processov i yavlenij mnogomernoj interpolyacii [Approach to construction of geometric models of multivariate processes and phenomena of multidimensional interpolation]. Programmnaya inzheneriya [Software engineering]. V. 10, I. 2, pp. 77-86. (in Russian)

22. Konopackij E.V. Principy modelirovaniya mnogofaktornyx processov i yavlenij s bol'shim kolichestvom isxodnyx dannyx [Principles of modeling multifactor processes and phenomena with a large amount of input data]. Informacionnye texnologii v proektirovanii i proizvodstve [Information technology in design and production]. I. 4(172), pp. 20-25. (in Russian)

23. Konopackij E.V. Reshenie differencial'nyx uravnenij metodami geometricheskogo modelirovaniya [Solution of differential equations by methods of geometric modeling]. Trudy 28-j Mezhdunarodnoj konferenciya po komp'yuternoj grafike i mashinnomu zreniyu «GraphiCon 2018» [Proceedings of the 28th International Conference on Computer Graphics and Computer Vision "GraphiCon 2018"]. Pp. 322-325. (in Russian)

24. Balyuba I.G., Polishhuk V.I., Goryagin B.F., Malyutina T.P., Davydenko I.P., Konopackij E.V., Kokareva Ya.A. Metod podvizhnogo simpleksa pri konstruirovanii 2-poverxnostej mnogomernogo prostranstva [The rolling of simplex method in the design of the 2-surfaces in the multidimensional space]. Modelyuvannya ta іnformacіjnі texnologії: Zbіrnik naukovix prac' [Models and Information Technologies: Zbіrnik naukovih prats]. V. 1, pp. 310-318. (in Russian)

25. Ortega Dzh., Pul U. Vvedenie v chislennye metody resheniya differencial'nyx uravnenij [Introduction to numerical methods for solving differential equations]. Moscow, 1986. 288 p. (in Russian)

26. Pavlov A.B. Grafoanaliticheskie sposoby konstruirovaniya poverxnostej slozhnoj formy. Dokt. Diss [Graphic-analytical methods of designing surfaces of complex shape. Doct. Diss]. Moscow, 1967. 26 p. (in Russian)

27. Sal'kov N.A. Formirovanie poverxnostej pri kineticheskom otobrazhenii [Formation of surfaces in kinetic mapping]. Geometriya i grafika [Geometry and graphics]. V. 6, I. 1, pp. 20-33. DOI: https://doi.org/10.12737/article_5ad094a0380725.32164760. (in Russian)

28. Samarskij A.A. Vvedenie v teoriyu raznostnyx sxem [Introduction to the theory of difference schemes]. Moscow, 1971. 553 p. (in Russian)

29. Skidan I.A. Geometricheskoe modelirovanie kinematicheskix poverxnostej v special'nyx koordinatax. Dokt. Diss [Geometric modeling of kinematic surfaces in special coordinates. Doct. Diss]. Donetsk, 1989. 340 p. (in Russian)

30. Tixonov A.N., Samarskij A.A. Uravneniya matematicheskoj fiziki [Equations of mathematical physics]. Moscow, 1977. 736 p. (in Russian)

31. Usmanova E.A., Korotkij V.A., Xmarova L.I. Komp'yuternoe modelirovanie kinematicheskix poverxnostej [Computer simulation of kinematic surfaces]. Geometriya i grafika [Geometry and graphics]. V. 3, I. 4, pp. 19-26. DOI: https://doi.org/10.12737/17347. (in Russian)

32. Yakovenko G.N. Differencial'nye uravneniya s fundamental'nymi resheniyami: Sofus Li i drugie [Differential equations with fundamental solutions: Sofus Lee and others]. Moscow, 2006. 112 p. (in Russian)

Login or Create
* Forgot password?