STUDYING 630 NM ATOMIC OXYGEN EMISSION SOURCES DURING STRONG MAGNETIC STORMS IN THE NIGHT MID-LATITUDE IONOSPHERE
Abstract and keywords
Abstract (English):
We analyze significant increases in 630 nm atomic oxygen night emissions during very strong geomagnetic storms, using optical measurements, theoretical modeling, and magnetogram inversion technique (MIT) data. It is shown that during strong magnetic storms when electron precipitation equatorial boundary at the night sector expands up to ~40°, the interaction of energetic electron flux with thermospheric components may cause extreme increases in the 630 nm emission intensity. Model calculations of the red line intensity show good agreement with observational data. Using the November 20, 2003 magnetic storm as an example, we have found that oxygen atom collisions with thermal Maxwell and superthermal electrons make a major contribution to the integral emission intensity. Thermospheric density variations during the magnetic storm significantly affect the red line generation.

Keywords:
modeling, ionospheric disturbance, airglow, magnetic storm
Text
Text (PDF): Read Download
References

1. Alex S., Mukherjee S., Lakhina G.S. Geomagnetic signatures during the intense geomagnetic storms of 29 October and 20 November 2003. J. Atmos. Sol. Terr. Phys. 2006, vol. 68, no. 7, pp. 769-780. DOI:https://doi.org/10.1016/j.jastp.2006.01.003.

2. Bazarzhapov A.D., Matveev M.I., Mishin V.M. Geomagnetic Variations and Storms. Novosibirsk, Nauka Publ., 1979. 248 p. (In Russian).

3. Cole K.D. Magnetospheric processes leading to mid-latitude aurora. Annales de Géophysique. 1970, vol. 26, no. 1, pp. 187-193.

4. Degtyarev V.I., Mikhalev A.V., Jiyao Xu. Nightglow variations in East Siberia during March 31 - April 4 2001 magnetic storm. Optika atmosfery i okeana [Atmospheric and Oceanic Optics]. 2003, vol. 16, no. 5-6, pp. 552-556. (In Russian).

5. Drob D.P., Emmert J.T., Crowley G., Picone J.M., Shepherd G.G., Skinner W., et al. An empirical model of the Earth's horizontal wind fields: HWM07. J. Geophys. Res. 2008, vol. 113, iss. A12, CiteID A12304. DOI:https://doi.org/10.1029/2008 JA013668.

6. Ebihara Y., Fok M.C., Sazykin S., Thomsen M.F., Hairston M.R., Evans D.S., et al. Ring current and the magnetosphere-ionosphere coupling during the superstorm of 20 November 2003. J. Geophys. Res. 2005, vol. 110, iss. A9, CiteID A09S22. DOI:https://doi.org/10.1029/2004ja010924.

7. Emmert J.T., Drob D.P., Shepherd G.G., Hernandez G., Jarvis M.J., Meriwether J.W., et al. DWM07 global empirical model of upper thermospheric storm-induced disturbance winds. J. Geophys. Res.: Space Phys. 2008, vol. 113, iss. A11, CiteID A11319. DOI:https://doi.org/10.1029/2008JA013541.

8. Fishkova L.M., Martsvaladze N.M. On dynamics of HI 656.3 and [OI] 630 nm in the upper atmosphere during magnetic storms with sudden commencement. Geomagnetizm i aeronomiya [Geomagnetism and aeronomy]. 1985, vol. 25, no. 3, pp. 509-511. (In Russian).

9. Gorely K.I., Karakchiyev V.D., Iyevenko I.B., Alekseyev V.N., Mikhalev A.V., Beletsky A.B. Simultaneous optical observations of the strong magnetic storm on March 31, 2001 in Moscow, East Siberia and Yakutia. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2002, iss. 2, pp. 265-266. (In Russian).

10. Krinberg I.A., Tashchilin A.V. Ionosfera i plazmosfera [Ionosphere and Plasmasphere]. Moscow, Nauka Publ., 1984, 177 p. (In Russian).

11. Liu H., Lühr H. Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J. Geophys. Res.: Space Phys. 2005, vol. 110, iss. A9, CiteID A09S29. DOI:https://doi.org/10.1029/2004JA010908.

12. Mikhalev A.V. Night behavior of the 630 nm emission in midlatitude auroras during severe magnetic storms. Solar-Terrestrial Magnetic Activity and Space Environment. COSPAR Colloquia Ser. 2002, iss. 14, pp. 295-297.

13. Mikhalev A.V., Beletsky A.B., Kostyleva N.V., Chernigovskaya M.A. Midlatitude airglows in the south of East Siberia during intense geomagnetic storms on October 29-31 and November 20-21, 2003. Kosmicheskie issledovaniya [Cosmic Res.]. 2004, vol. 42, no. 6, pp. 616-621. (In Russian).

14. Mishin V.M. The magnetogram inversion technique and some applications. Space Sci. Rev. 1990, vol. 53, no. 1, pp. 83-163. DOI:https://doi.org/10.1007/bf00217429.

15. Mishin V.V., Lunyushkin S.B., Mikhalev A.V., Klibanova Yu.Yu., Tsegmed B., Karavaev Yu.A., et al. Extreme geomagnetic and optical disturbances over Irkutsk during the 2003 November 20 superstorm. J. Atm. Solar-Terr. Phys. 2018, vol. 181, pp. 68-78. DOI:https://doi.org/10.1016/j.jastp.2018.10.013.

16. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res.: Space. Phys. 2002, vol. 107, iss. A12, CiteID 1468. DOI: 10.1029/ 2002JA009430.

17. Pokhotelov D., Mitchell C.N., Spencer P.S.J., Hairston M. R., Heelis R. A. Ionospheric storm time dynamics as seen by GPS tomography and in situ spacecraft observations. J. Geophys. Res.: Space. Phys. 2008, vol. 113, iss. A3, CiteID A00A16. DOI:https://doi.org/10.1029/2008ja013109.

18. Prölss G.W. Magnetic storm associated perturbations of the upper atmosphere: recent results obtained by satellite-borne gas analyzers. Rev. Geophys. 1980, vol. 18, no. 1, pp. 183-202. DOI:https://doi.org/10.1029/RG018i001p00183.

19. Rassoul H.K., Rohrbaugh R.P., Tinsley B.A., Slater D.W. Spectrometric and photometric observations of low-latitude aurorae. J. Geophys. Res. 1993, vol. 98, iss. A5, pp. 7695-7710. DOI:https://doi.org/10.1029/92JA02269.

20. Rees M.H., Luckey D. Auroral electron energy derived from ratio of spectroscopic emissions. 1. Model computations. J. Geophys. Res. 1974, vol. 79, no. 34, pp. 5181-5186. DOI:https://doi.org/10.1029/JA079i034p05181.

21. Rees M.H., Roble R.G. Excitation of O(1D) atoms in aurorae and emission of the [OI] 6300 Å line. Canad J. Phys. 1986, vol. 64, no. 12, pp.1608-1613. DOI:https://doi.org/10.1139/p86-284.

22. Richards P.G., Fennelly J.A., Torr D.G. EUVAC: A solar EUV flux model for aeronomic calculations. J. Geophys. Res. 1994, vol. 99, no. A5, pp. 8981-8992. DOI:https://doi.org/10.1029/94ja00518.

23. Tashchilin A.V., Romanova E.B. UT-control effects in the latitudinal structure of the ion composition of the topside ionosphere. J. Atmos. Terr. Phys. 1995, vol. 57, no. 12, pp. 1497-1502. DOI:https://doi.org/10.1016/0021-9169(94)00146-f.

24. Tashchilin A.V., Romanova E.B. Numerical modeling the high-latitude ionosphere. Proc. COSPAR Colloquia Ser. 2002, vol. 14, pp. 315-325.

25. Tashchilin A.V., Leonovich L.A. Modeling nightglow in atomic oxygen red and green lines under moderate disturbed geomagnetic conditions at midlatitudes. Solar-Terr. Phys. 2016, vol. 2, iss. 4, pp. 94-106. DOI:https://doi.org/10.12737/24276.

26. Tinsley B.A., Bohrbaugh R., Rassoul H., Sahai Y., Teixeira N.R., Slater D. Low-latitude aurorae and storm time current systems. J. Geophys. Res. 1986, vol. 91, no. A10, pp. 11257-11269. DOI:https://doi.org/10.1029/JA091iA10p11257.

Login or Create
* Forgot password?