REFLECTION FROM CURVED MIRRORS IN A PLANE
Abstract and keywords
Abstract (English):
Reflection from a certain mirror is one of the main types of transformations in geometry. On a plane a mirror represents a straight line. When reflecting, we obtain an object, each point of which is symmetric with respect to this straight line. In this paper have been considered examples of reflection from a circle – a general case of a straight line, if the latter is defined through a circle of infinite radius. While analyzing a simple reflection and generalization of this process to the cases of such curvature of the mirror, an interesting phenomenon was found – an increase in the reflection dimension by one, that is, under reflection of a one-dimensional object from the circle, a two-dimensional curve is obtained. Thus, under reflection of a point from the circle was obtained the family of Pascal's snails. The main cases, related to reflection from a circular mirror the simplest two-dimensional objects – a segment and a circle at their various arrangement, were also considered. In these examples, the reflections are two-dimensional objects – areas of bizarre shape, bounded by sections of curves – Pascal snails. The most interesting is the reflection of two-dimensional objects on a plane, because the reflection is too informative to fit in the appropriate space. To represent the models of obtained reflections, it was proposed to move into three-dimensional space, and also developed a general algorithm allowing obtain the object reflection from the curved mirror in the space of any dimension. Threedimensional models of the reflections obtained by this algorithm have been presented. This paper reveals the prospects for further research related to transition to three-dimensional space and reflection of objects from a spherical surface (possibility to obtain four-dimensional and five-dimensional reflections), as well as studies of reflections from geometric curves in the plane, and more complex surfaces in space.

Keywords:
reflection, curvilinear mirror, dimension, circle, Pascal snails, three-dimensional reflection model.
References

1. Aleksandrov A.D. Stereometriya. Geometriya v prostranstve [Stereometry. Geometry in space]. Visaginas Publ., Alfa Publ., 1998. 576 p. (in Russian)

2. Beglov I.A. Metod vrashcheniya geometricheskikh ob"ektov vokrug krivolineynoy osi [The method of rotation of geometric objects around the curvilinear axis]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 3, pp. 45-50. DOI:https://doi.org/10.12737/article_59bfa4eb0bf488.99866490. (in Russian)

3. Berman G.N. Tsikloida [Cycloid]. Moscow: Nauka Publ., 1980. 112 p. (in Russian)

4. Borovikov I.F. O primenenii preobrazovaniy pri reshenii zadach nachertatel'noy geometrii [On the use of transformations in solving problems of descriptive geometry]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 2, pp. 78-84. DOI:https://doi.org/10.12737/article_5b55a35d683a33.30813949. (in Russian)

5. Vasev P. A. O sozdanii metodov mnogomernoy vizualizatsii [On the creation of methods for multidimensional visualization]. Trudy [Proceedings]. 2002, pp. 431-437. (in Russian)

6. Vyatkin S.I. Modelirovanie slozhnykh poverkhnostey s primeneniem funktsiy vozmushcheniya [Modeling of complex surfaces using perturbation functions]. Avtometriya [Autometry]. 2007, V. 43, I. 3, pp. 40-47. (in Russian)

7. Girsh A.G. Fokusy algebraicheskikh krivykh [The foci of algebraic curves]. Geometriya i grafika [Geometry and Graphics]. 2015, V. 3, I. 3, pp. 4-17. DOI:https://doi.org/10.12737/14415. (in Russian)

8. Gordon V.O. Kurs nachertatel'noy geometrii [The course of descriptive geometry]. Moscow: Vysshaya shkola Publ., 1998. 272 p.

9. Grafskiy O.A. Analiz postroeniya krivykh vtorogo poryadka [Analiz postroeniya krivykh vtorogo poryadka]. Nauchno-tekhnicheskoe i ekonomicheskoe sotrudnichestvo stran ATR v XXI veke: Materialy Vserossiyskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiem, 22-24 aprelya 2009 g. [Scientific and technical and economic Labor Cooperation of the Asia-Pacific Countries in the 21st Century: Materials of the All-Russian Scientific and Practical Conference with international participation, April 22-24 2009]. Khabarovsk: DVGUPS Publ., 2009, V. 6, pp. 165-168.

10. Grafskiy O.A. Vidy affinnykh preobrazovaniy i ikh kompozitsii [Types of affine transformations and their compositions]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 3, pp. 11-16. DOI:https://doi.org/10.12737/21529.

11. Grafskiy O.A. Osobennosti svoystv paraboly pri ee modelirovanii [Features of the properties of a parabola at its modeling]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 2, pp. 63-77. DOI:https://doi.org/10.12737/article_5b55a16b547678.01517798.

12. Zhizhilkin I.D. Inversiya [Inversion]. Moscow: Moskovskiy tsentr nepreryvnogo matematicheskogo obrazovaniya Publ. 2009. 69 p.

13. Zhikharev L.A. Fraktaly v trekhmernom prostranstve. i-fraktaly [Fractals in three-dimensional space. i-fractals]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 3, pp. 51-66. DOI:https://doi.org/10.12737/article_59bfa55ec01b38.55497926. (in Russian)

14. Zhikharev L.A. Fraktal'nye razmernosti [Fractal dimensions]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 3, pp. 33-48. DOI:https://doi.org/10.12737/article_5bc45918192362.77856682. (in Russian)

15. Kantor G. Trudy po teorii mnozhestv [Works on Set Theory]. Moscow: Nauka Publ., 1985, pp. 124. (in Russian)

16. Kleyn K.F. Vysshaya geometriya [Higher geometry]. Gosudarstvennoe ob"edinennoe nauchno-tekhnicheskoe izd-vo Publ., 1939. (in Russian)

17. Kleyn K.F. Elementarnaya matematika s tochki zreniya vysshey [Elementary mathematics from the point of view of higher]. Moscow: Nauka Publ., 1987, V. 2. (in Russian)

18. Klyachin V.A. Triangulyatsiya Delone mnogomernykh poverkhnostey i ee approksimatsionnye svoystva [Delone's triangulation of multidimensional surfaces and its approximation properties]. Izvestiya vysshikh uchebnykh zavedeniy. Matematika [Proceedings of higher educational institutions. Maths]. 2012, I. 1, pp. 31-39. (in Russian)

19. Kopteva D. Ulitka Paskalya [Pascal Ulitka]. Moscow, Natsional'noe izdatel'stvo obrazovaniya i nauki „Az-buki“ Publ., 2018, V. 61, I. 3, pp. 465-480. (in Russian)

20. Kurant R. Chto takoe matematika? [What is mathematics?]. Moscow: MtsNMO Publ., 2001. 318 p. (in Russian)

21. Levkin Yu.S. Poluchenie chetyrekhmernykh nomogramm na baze teoremy podobiya [Obtaining four-dimensional nomograms based on the similarity theorem]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 2, pp. 69-74. DOI:https://doi.org/10.12737/article_5953f334279642.78930109. (in Russian)

22. Levkin Yu.S. Shestimernaya epyurnaya nomogramma v chetyrekhoktantovom izmerenii [Six-dimensional epurum nomogram in four-octant measurement]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 1, pp. 39-47. DOI:https://doi.org/10.12737/article_5ad098b05f1559.36303938. (in Russian)

23. Lyusternik L.A. Topologicheskie metody v variatsionnykh zadachakh i ikh prilozheniya k differentsial'noy geometrii poverkhnostey [Topological methods in variational problems and their applications to the differential geometry of surfaces]. Uspekhi matematicheskikh nauk [Successes of Mathematical Sciences]. 1947, V. 2, I. 1, pp. 166-217. (in Russian)

24. Lyashkov A.A. Modelirovanie formoobrazovaniya slozhnykh poverkhnostey detaley [Modeling the formation of complex surfaces of parts]. Metalloobrabotka [Metalworking]. 2010, I. 4 (58), pp. 36-42. (in Russian)

25. Reznikova Yu.S. Sredinno-usechennye simpleksy v affinnykh prostranstvakh proizvol'noy razmernosti [Median-truncated simplexes in affine spaces of arbitrary dimension]. International geometry center [International geometry center]. 2010, p. 57. (in Russian)

26. Rozenfel'd B.A. Mnogomernye prostranstva [Multidimensional spaces]. Moscow: Kniga po Trebovaniyu Publ., 2013. 637 p. (in Russian)

27. Sal'kov N.A. Prilozhenie svoystv tsiklidy Dyupena k izobreteniyam [Application of Dupin cyclide properties to inventions]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 4, pp. 37-43. DOI:https://doi.org/10.12737/article_5a17fd233418b2.84489740. (in Russian)

28. Sal'kov N.A. Formirovanie tsiklicheskikh poverkhnostey v kineticheskoy geometrii [Formation of cyclic surfaces in kinetic geometry]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 4, pp. 24-29. DOI:https://doi.org/10.12737/article_5a17fbe3680f52.30844454. (in Russian)

29. Sal'kov N.A. Tsiklida Dyupena i ee prilozhenie [Cyplid Dupin and its annex]. Moscow: NITs INFRA-M Publ., 2016. 145 p. (in Russian)

30. Sal'kov N.A. Tsiklida Dyupena i krivye vtorogo poryadka [Dupin cyclide and second order curves. Part 1]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 2, pp. 19-28. DOI:https://doi.org/10.12737/19829. (in Russian)

31. Sal'kov N.A. Tsiklida Dyupena i krivye vtorogo poryadka. Chast' 2 [Dupin cyclide and second order curves. Part 2]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 3, pp. 17-28. DOI:https://doi.org/10.12737/21530. (in Russian)

32. Tupitsyn A. A. Al'ternativnyy vid zubchatogo zatsepleniya: svoystva i kharakteristiki [An alternative type of gearing: properties and characteristics]. Sovremennye tekhnologii. Sistemnyy analiz. Modelirovanie [Modern technologies. System analysis. Modeling]. 2010, I. 4, pp. 83-91. (in Russian)

33. Kharitonova I.V. Osnovy proektivnoy geometrii [Basics of projective geometry]. Arkhangel'sk: Pomorskiy universitet Publ., 2005. 28 p. (in Russian)

34. Khausdorf F. Teoriya mnozhestv [Set Theory]. Moscow: Kniga po Trebovaniyu Publ., 2014. 304 p. (in Russian)

35. Chechulin V.L. Teoriya mnozhestv s samoprinadlezhnost'yu (osnovaniya i nekotorye prilozheniya) [Theory of sets with self-belonging (bases and some applications)]. Permskiy gosudarstvennyy universitet [Perm State University]. Perm', 2010. 100 p. (in Russian)

36. Yaglom I.M. Geometricheskie preobrazovaniya. Lineynye i krugovye preobrazovaniya [Geometric transformations. Linear and circular transformations]. Moscow: Kniga po Trebovaniyu Publ., 2013. 607 p. (in Russian)

Login or Create
* Forgot password?