GRNTI 14.01 Общие вопросы народного образования и педагогики
BBK 7426 Методика преподавания учебных предметов в общеобразовательной школе
TBK 3018 Методика преподавания других предметов
The main direction of the article is to consider methods for solving the problems of the fi nal stage of the 2018 republican mathematical olympiad of schoolchildren in the Kyrgyz Republic. In the course of the study, the position of the olympiad, the principles of confi guration and requirements for the olympiad tasks were studied. The content of the selection round of the city olympiad of schoolchildren conducted offl ine and the methods for solving problems of the 4th stage of the republican olympiad of schoolchildren considered in this paper may be of interest to heads of methodological sections, mathematics teachers who prepare their students for participation in mathematical competitions for students and schoolchildren studying methods for solving olympiad problems.
mathematics, republican olympiad, olympiad problem, solution.
1. Olimpiady [Oimpic games]. Available at: http://edu.gov.kg/ru/schools/olimpiady/ (in Russian)
2. Keldibekova A.O. Bazovye principy reshenija olimpiadnyh zadanij po trigonometrii [Basic principles for solving trigonometry tasks]. Mezhdunarodnyj zhurnal jeksperimental’nogo obrazovanija [International journal of experimental education]. 2018, I. 9, pp. 16-23. Available at: http://expeducation.ru/ru/article/view?id= 11831 (in Russian); DOI: https://doi.org/10.17513/mjeo.11831; EDN: https://elibrary.ru/YUJKZF
3. Agahanov N.H., Podlipskij O.K. Municipal’nyj jetap ΧLII Vserossijskoj olimpiady shkol’nikov po matematike v Moskovskoj oblasti [Municipal stage of the All-Russian Mathematical School Olympiad in the Moscow Region]. Matematika v shkole [Mathematics at school]. 2016, I. 2, pp. 14-16 (in Russian)
4. Keldibekova A.O. Kriterii ocenivanija olimpiadnyh zadanij po matematike [Criteria for evaluating math olympiad tasks]. Sbornik statej III Mezhdunarodnoj nauchnoj konferencii «Pedagogika, psihologija, obshhestvo », 1 sessija [Collection of articles III International scientifi c conference “Pedagogy, psychology, society”, 1 session].Moscow, MGU Publ., 2018. pp. 7-13. (in Russian); EDN: https://elibrary.ru/UPDAYC
5. Sazhenkov A.N., Sazhenkova T.V. Teorija i praktika reshenija olimpiadnyh zadach po matematike [Theory and practice of solving Olympiad problems in mathematics]. Barnaul, Altajskiy universitet Publ., 2016. 130 p. (in Russian); EDN: https://elibrary.ru/XFARFJ
6. Keldibekova A.O. Dejatel’nost’ uchitelej matematiki po podgotovke uchashhihsja k olimpiadam v ramkah shkoly olimpijskogo rezerva [Th e activities of mathematics teachers to prepare students for olympiads in the framework of the school of Olympic reserve]. Sovremennye problemy nauki i obrazovanija [Modern problems of science and education]. 2017, I. 5. Available at: http://science-education.ru/ru/article/view?id=26943 (in Russian); DOI: https://doi.org/10.17513/spno.26943; EDN: https://elibrary.ru/ZQNJMJ