COMPETENCE APPROACH IN TEACHING THE TOPIC "TANGENT PLANE AND NORMAL"
Abstract and keywords
Abstract (English):
Qualified presentation of the topic "Tangent Plane and Surface Normal" in terms of competence approach is possible with the proper level for students' attention focusing on both intra-subject and inter-subject relations of descriptive geometry. Intra-subject connections follow from the position that the contingence is a particular (limit) case of intersection. Therefore, the line of intersection of the tangent plane and the surface, or two touching surfaces, has a special point at the tangency point. It is known from differential geometry [1] that this point can be nodal, return, or isolated one. In turn, this point’s appearance depends on differential properties of the surface(s) in this point’s vicinity. That's why, for the competent solution of the considered positional problem account must be also taken of the inter-subject connections for descriptive and differential geometry. In the training courses of descriptive geometry tangent planes are built only to the simplest surfaces, containing, as a rule, the frames of straight lines and circles. Therefore, the tangent plane is defined by two tangents drawn at the tangency point to two such lines. In engineering practice, as such lines are used cross-sections a surface by planes parallel to any two coordinate planes. That is, from the standpoints for the course of higher mathematics, the problem is reduced to calculation for partial derivatives. Although this topic is studied after the course of descriptive geometry, it seems possible to give geometric explanation for computation of partial derivatives in a nutshell. It also seems that the study of this topic will be stimulated by a story about engineering problems, which solution is based on construction of the tangent plane and the normal to the technical surface. In this paper has been presented an example for the use of surface curvature lines for programming of milling processing for 3D-harness surfaces.

Keywords:
surface, tangent plane, normal, partial derivatives, surface curvature, Dupin indicatrix, milling.
Text

Тема «Касательная плоскость и нормаль поверхности» в курсе начертательной геометрии является уникальной в том смысле, что:
• во-первых, в ее изложении следует четко выделить внутрипредметные связи (компетенции): касательная плоскость — это предельное положение секущей и как оно влияет на особенности сечения в точке касания, следовательно, характеризует дифференциальные свойства поверхности, в частности, как от них зависит ее развертываемость на плоскость;
• во-вторых, отмеченные выше внутрипредметные связи тесно переплетаются с межпредметными начертательной и дифференциальной геометрий, с одной стороны, и дифференциальным исчислением (частные производные), с другой стороны;
• в-третьих, эта тема имеет непосредственный выход в инженерную практику, в частности, в технологию фрезерной обработки поверхностей объемной оснастки на станках с числовым программным управлением.
Таким образом, квалифицированное изложение материала этой темы должно способствовать реальным подвижкам трансформирования традиционного курса начертательной геометрии в прикладную (инженерную) геометрию [14]. Для достижения этой цели в преподавании материала этой темы следует акцентировать внимание студентов на решении следующих задач:
1) построение сечения поверхности касательной плоскостью и построение линии пересечения двух соприкасающихся поверхностей, изучение вида (особенности) точки касания на этих линиях;
2) аналитическая реализация графического алгоритма построения касательной плоскости и нормали поверхности;
3) геометрическое толкование построения индикатрисы Дюпена и линий кривизны поверхности;
4) использование линий кривизны поверхности для программирования фрезерной обработки поверхностей объемной оснастки.
Далее обсудим решение перечисленных задач, обратив внимание на межпредметные связи начертательной геометрии и смежных разделов математики.

References

1. Vygodskij M.YA. Differencial'naya geometriya [Differential geometry]. Moscow-Leningrad, State publishing House of Technical and theoretical literature Publ., 1949. (in Russian)

2. Golovanov N.N. Geometricheskoe modelirovanie [Geometric modeling]. Moscow, Fizmatgiz Publ., 2002. (in Russian)

3. Grafskij O.A., Ivanov G.S. Nachertatel'naya geometriya kak uchebnaya disciplina i teoreticheskaya baza prikladnoj geometrii, inzhenernoj i komp'yuternoj grafiki [Descriptive geometry as a subject and theoretical basis of applied geometry, engineering and computer graphics]. Graficheskoe obrazovanie: voprosy teorii, istorii i praktiki: trudy vtoroj mezhvuzovskoj nauchno-metod. konf. [Graphic education: theory, history and practice: proceedings of the second interuniversity scientific method. conference]. Khabarovsk, FESTU Publ., 2005, pp. 59-63. (in Russian)

4. Grafskij O.A. Vychislitel'naya geometriya [Computational geometry]. Khabarovsk, FESTU Publ., 2014. 150 p. (in Russian)

5. Grafskij O.A., Ponomarchuk YU.V. Nekotorye metodicheskie aspekty geometro-graficheskoj podgotovki studentov [Some methodological aspects of geometro-graphic training of students]. Problemy i perspektivy razvitiya obrazovaniya v tekhnicheskih vuzah [Problems and prospects of a development of education in technical universities]. Khabarovsk, FESTU Publ., 2016, pp. 200-204. (in Russian)

6. Guznenkov V.N., Jakunin V.I. Principy formirovaniya struktury i soderzhaniya geometro-graficheskoj podgotovki [Principles of formation of the structure and content of geometric and graphic preparation]. Standarty i monitoring v obrazovanii [Standards and monitoring in education]. 2013, I. 6, pp. 34-39. (in Russian)

7. Guznenkov V.N., Jakunin V.I. Geometro-graficheskaja podgotovka kak integrirujushhij faktor obrazovatel'nogo processa [Geometro-graphic training as an integrating factor in the educational process]. Obrazovanie i obshhestvo [Education and society]. 2014, I. 2, pp. 26-28. (in Russian)

8. Dmitrieva I.M., Ivanov G.S., Chuvashev A.P. Nachertatel'naya geometriya [Descriptive geometry]. Moscow, MSTU Publ., 2018, 92 p. (in Russian)

9. Dmitrieva I.M., Ivanov G.S. O professional'nyh kompetencijah v prepodavanii nachertatel'noj geometrii [About the professional competence in teaching of descriptive geometry]. Problemy kachestva graficheskoj podgotovki studentov v tehnicheskom vuze: tradicii i innovacii [Problems of quality of graphic training of students in technical University: traditions and innovations]. Perm': PNIPU Publ., 2017, I. 4, pp. 237-242. (in Russian)

10. Ivanov G.S. Obosnovanie vybora racional'noj traektorii dvizheniya instrumenta po poverhnosti [Rationale for choosing a rational trajectory of the tool on the surface]. Avtomatizaciya proektirovaniya mashinostroitel'nyh predpriyatij. Tezisy dokladov [Computer-aided design of machine-building enterprises. Thesis of reports]. Kiev, 1981, p. 72.

11. Ivanov G.S., Dmitrieva I.M. Organizacionno-pravovoe obespechenie postanovki integrirovannogo kursa linejnoj algebry, nachertatel'noj i anali-ticheskoj geometrii [Organizational and legal support of the integrated production of linear algebra, descriptive and analytic geometry]. Pravo i obrazovanie [Law and education ]. Moscow, 2007, I. 11, pp. 68-74. (in Russian)

12. Ivanov G.S., Dmitrieva I.M. Integrirovannyj kurs geometrii i linejnoj algebry kak sredstvo formirovanija matematicheskoj podgotovki studentov tehnicheskih vuzov [Integrated course of geometry and linear algebra as means of formation of mathematical training of students of technical universities]. Omskij nauchnyj vestnik, serija Obshhestvo. Istorija. Sovremennost' [Omsk scientific Bulletin, series Society. History. Modernity]. 2010, I. 5, pp. 205-208. (in Russian)

13. Ivanov G.S. Nachertatel'naja geometrija [Descriptive geometry]. Moscow, MGUL Publ., 2012. 340 p. (in Russian)

14. Ivanov G.S. Predystorija i predposylki transformacii nachertatel'noj geometrii v inzhenernuju [Previous History and Background of Transformation of the Descriptive Geometry in the Engineering Geometry]. Geometrija i grafika. [Geometry and graphics]. 2016, V. 4, I. 2, pp. 29-36. DOI:https://doi.org/10.12737/19830. (in Russian)

15. Ivanov G.S. Koncepciya sovremennogo uchebnika nachertatel'noj geometrii [The concept of a modern textbook of descriptive geometry]. Nauchno-metodicheskie problemy graficheskoj podgotovki v tekhnicheskom vuze na sovremennom etape [Scientific and methodological problems of graphic training in technical University at the present stage]. Astrahan: ASTU Publ., 2010, pp. 65-67. (in Russian)

16. Ivanov G.S. Perspektivy nachertatel'noj geometrii kak uchebnoj discipliny [Prospects of descriptive geometry as a discipline]. Geometriya i grafika [Geometry and graphics]. 2013, V. 1, I. 2, pp. 26-27. (in Russian)

17. Ivanov G.S. Kompetentnostnyj podhod k soderzhaniju kursa nachertatel'noj geometrii [Competence approach to the content of the course of descriptive geometry]. Geometrija i grafika [Geometry and graphics]. 2013, V. 1, I. 2, pp. 3-5. (in Russian). DOI:https://doi.org/10.12737/775.

18. Ivanov G.S., Dmitrieva I.M. Nelinejnye formy v inzhenernoj grafike. [Nonlinear forms in engineering graphics]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 2, pp. 4-12. (in Russian)

19. Moskalenko V.O., Ivanov G.S., Murav'ev K.A. Kak obespechit' obshchegeometricheskuyu podgotovku studentov tekhnicheskih universitetov [How to provide General geometric training for students of technical universities]. Nauka i obrazovanie [Science and education]. Moscow: MSTU Publ., 2012, I. 8. Available at: http://technomag.edu.ru/doc/445140.html (in Russian)

20. Pis'mennyj D.T. Konspekt lekcij po vysshej matematike [Lecture notes on higher mathematics]. Moscow, Ayris-press Publ., 2006. (in Russian)

21. Sal'kov N.A. Geometricheskaya sostavlyayushchaya tekhnicheskih innovacij [Geometric component of technical innovations]. Geometriya i grafika [Geometry and graphics]. 2018, V.6, I. 2, pp. 85-94. (in Russian)

22. Foks A., Pratt M. Vychislitel'naja geometrija [Computational geometry]. Moscow, Mir Publ., 1982. (in Russian)

Login or Create
* Forgot password?