LOCI OF POINTS EQUALLY SPACED FROM TWO GIVEN GEOMETRICAL FIGURES. PART 3
Abstract and keywords
Abstract (English):
The loci (L) equally spaced from a sphere and a straight line, and from a conic surface and a plane, are considered. The following options have been considered. The straight line passes through the center of the sphere (a = 0), at the same time completely at spheres’ positive radiuses a surface of rotation is obtained, forming which the parabola is, and a rotation axis – this straight line. The parabola’s top forms the biggest parallel on the site points of intersection of the parabola’s forming with the rotation axis. Let's call such paraboloid a perpendicular paraboloid of rotation. The straight line crosses the sphere, but does not pass through the center (0 < a < R/2) – a perpendicular paraboloid, at that the surface is also completely obtained at radiuses’ positive values. The straight line is tangent to the sphere (a = R/2) – a surface which projections are parabolas, lemniscates and circles, and a piece from a tangency point to the sphere center – at radiuses positive values; a beam from the sphere center, perpendicular to this straight line – at radiuses negative values, at that the beam and the piece belong to one straight line. The straight line lies out of the sphere (α > R/2) – two different surfaces, having the general properties with a hyperbolic paraboloid, are obtained, one of which is obtained at radius positive values, and another one – at radius negative values. It has been noticed that loci, equally spaced from a sphere and a straight line, and from a cylinder and a point, coincide at equal radiuses and distances from axes to points and straight lines if to take into account the surfaces obtained both at positive, and negative values of radiuses. Locus, equally spaced from the conic surface of rotation and the plane, are two elliptic conic surfaces which in case 7.4.1 degenerate in the conic surfaces of rotation. In cases 7.4.3 and 7.4.4 one elliptic conic surface degenerates in a plane and a parabolic cylinder respectively.

Keywords:
geometry, descriptive geometry, loci, L, analytical geometry.
Text

Введение
Изучением геометрических мест точек первым занимался в 1941 г. Дмитрий Иванович Каргин (1880–1949) [13; 18; 23]. Изучали геометрические места точек Александр Давидович Посвянский (1909–…) с коллегами [24], Владимир Яковлевич Волков (1946–2017) с коллегами [2; 3], Геннадий Сергеевич Иванов [14–16], он же с коллегами [28; 29], Антон Георгиевич Гирш [9], Н.В. Наумович [21], И.И. Александров [1]. Совсем недавно нам удалось установить — изучал равноудаленные геометрические места в конце 50-х — начале 60-х гг. прошлого века В.В. Глоговский [10–12], особенно отметим его статью «Эквидистанты» [10]. В это же время вышла книга Н.В. Наумович «Геометрические места в пространстве» [21]. Затронули тему геометрических мест точек Марк Яковлевич Выгодский (1898–1965) в своих ставших классическими справочниках по элементарной и высшей математике и в работе [4], а также один из авторов этой публикации [6–8]. На Всероссийском студенческом конкурсе «Инновационные разработки» за одиннадцать лет его существования было заслушано 59 проектов самой разной тематики: 3D-моделирование, элементы САПР, подвижной состав железных дорог, двигатели, турбины, компрессоры и их части, геометрия, энергосберегающие установки, автомобили и другие передвижные средства, сигнализация, солнечные часы, строительство, история науки и техники, методические вопросы преподавания и пр. [5]. Пять из них (8%) — работы по равноудаленным геометрическим местам. Почти все проекты завоевали призовые места. В 2013–2014 гг. — третьи места, в 2017-м — второе и в 2018-м один из авторов этой работы завоевал третье место. Данная статья является продолжением работ «Геометрические места точек, равноотстоящих от двух заданных геометрических фигур. Часть 1» [6] и «Геометрические места точек, равноотстоящих от двух заданных геометрических фигур. Часть 2: геометрические места точек, равноудаленных от точки и конической поверхности» [7]. В предлагаемой вашему вниманию работе рассматриваются ГМТ, равноудаленных от: 1) сферы и прямой; 2) конической поверхности и плоскости. Основой для систематизации ГМТ является табл. 1, приведенная в работе [6].

References

1. Aleksandrov I.I. Sbornik geometricheskih zadach na postroenie s reshenijami [The collection of geometrical tasks on construction with decisions]. Moscow, URSS Publ., 2004. 176 p. (in Russian)

2. Volkov V.Ja. Kurs nachertatel'noj geometrii na osnove geometricheskogo modelirovanija [Course of descriptive geometry on the basis of geometrical modeling]. Omsk, SibADI Publ., 2010. 252 p. (in Russian)

3. Volkov V.Ja., Jurkov V.Ju., Panchuk K.L. Kajgorodtseva N.V. Sbornik zadach i uprazhnenij po nachertatel'noj geometrii [The collection of tasks and exercises on descriptive geometry]. Omsk, SibADI Publ., 2010. 74 p. (in Russian)

4. Vygodskij M.Ja. Analiticheskaja geometrija [Analytical geometry]. Moscow, Fizmatgiz Publ., 1963. 523 p. (in Russian)

5. Vyshnepol'skij V.I., Kadykova N.S., Prokhorov N.I. Vserossijskij studencheskij konkurs «Innovatsionnye razrabotki» [All-Russian student's competition "Innovative Developments"]. Geometrija i grafika [Geometry and Graphics]. 2016, V. 4, I. 4, pp. 69-86. (in Russian) DOI:https://doi.org/10.12737/22842

6. Vyshnepol'skij V.I., Sal'kov N.A., Zavarihina E.V. Geometricheskie mesta tochek, ravnootstojaschih ot dvuh zadannyh geometricheskih figur. Chast' 1 [Loci, equidistant from two set geometrical figures. Part 1]. Geometrija i grafika [Geometry and Graphics]. 2017, V. 5, I. 3, pp. 21-35. (in Russian). DOI:https://doi.org/10.12737/22842

7. Vyshnepol'skij V.I., Dallakjan O.L., Zavarihina E.V. Geometricheskie mesta tochek, ravnootstojaschih ot dvuh zadannyh geometricheskih figur. Chast' 2 [Loci, equidistant from two set geometrical figures. Part 2]. Geometrija i grafika [Geometry and Graphics]. 2017, V. 5, I. 4, pp. 15-23. (in Russian). DOI:https://doi.org/10.12737/article_5a17f9503d6f40.18070994.

8. Vyshnepol'skij V.I. Metodicheskie osnovy podgotovki i provedenija olimpiad po graficheskim distsiplinam v vysshej shkole. Kand. Diss. [Methodical bases of preparation and holding the Olympic Games on graphic disciplines at the higher school. Cand. Diss.]. Moscow, 2000. 250 p.

9. Girsh A.G. Kak reshat' zadachu. Metodicheskie ukazanija po resheniju zadach povyshennoj slozhnosti [How to solve a problem. Methodical indications for the solution of problems of the increased complexity]. Omsk, SibADI Publ., 1986. 36 p. (in Russian)

10. Glogovskij V.V. Ekvidistanty. Voprosy teorii, prilozhenij i metodiki prepodavanija nachertatel'noj geometrii [Equidistance. Questions of the theory, applications and technique of teaching descriptive geometry]. Trudy Rizhskoj nauchno-metodicheskoj konferentsii [Works of the Riga scientific and methodical conference.] Riga: RIIGVF Publ., 1960. 422 p. (in Russian)

11. Glogovskij V.V. Nauchnye zapiski L'vovskogo politehnicheskogo instituta [Scientific notes of the Lviv polytechnical institute]. 1955, V. 30, I. 1, pp. 72-90 p. (in Russian)

12. Glogovskij V.V. Nauchnye zapiski L'vovskogo politehnicheskogo instituta [Scientific notes of the Lviv polytechnical institute]. 1956, V. 38, I. 2, 72-90 pp. (in Russian)

13. Eliseev N.A. Etjudy po nachertatel'noj geometrii professora D.I. Kargina. Sovershenstvovanie podgotovki uchaschihsja i studentov v oblasti grafiki, konstruirovanija i standartizatsii [Etudes on descriptive geometry of professor D.I. Kargin. Improvement of training of pupils and students in the field of graphics, designing and standardization]. Mezhvuzovskij nauchno-metodicheskij sbornik [Interuniversity scientific and methodical collection]. Saratov: SGTU Publ., 2004, 56-58 pp. (in Russian)

14. Ivanov G.S. Nachertatel'naja geometrija [Descriptive geometry]. Moscow, FGBOU VPO MGUL Publ., 2012. 340 p. (in Russian)

15. Ivanov G.S. Printsip dvojstvennosti - teoreticheskaja baza vzaimosvjazi sinteticheskih i analiticheskih sposobov reshenija geometricheskih zadach [The principle of duality - the theoretical basis for the relationship of synthetic and analytical methods for solving geometric problems]. Geometrija i grafika [Geometry and graphics]. 2016, V. 4, I. 3, pp. 3-10. (in Russian). DOI:https://doi.org/10.12737/21528.

16. Ivanov G.S. Teoreticheskie osnovy nachertatel'noj geometrii [Theoretical foundations of descriptive geometry]. Moscow: Mashinostroenie Publ., 1998. 458 p. (in Russian)

17. Kajgorodtseva N.V. Poverhnosti v nachertatel'noj geometrii i logiko-geometricheskoe myshlenie [Surfaces in descriptive geometry and logical-geometric thinking]. Omsk: OmGTU Publ., 2013. 184 p. (in Russian)

18. Kargin D.I. Etjudy po nachertatel'noj geometrii. Geometricheskie mesta [Studies on descriptive geometry. Geometric places]. PFA RAN Publ. (in Russian)

19. Krivoshapko S.N. Entsiklopedija analiticheskih poverhnostej [Encyclopedia of analytical surfaces]. Moscow: LIBROKOM Publ., 2010. 560 p. (in Russian)

20. Krivoshapko S.N. Analiticheskie poverhnosti v arhitekture zdanij, konstruktsij i izdelij [Analytical surfaces in the architecture of buildings, structures and products]. Moscow: «LIBROKOM» Publ., 2012. 328 p. (in Russian)

21. Naumovich N.V. Geometricheskie mesta v prostranstve i zadachi na postroenie [Geometrical places in space and construction tasks]. Moscow: Gos. uchebno-pedagogicheskoe izd-vo, 1962. 152 p. (in Russian)

22. Obuhova V.S. Poetapnoe modelirovanie tehnicheskih poverhnostej [Phased modeling of technical surfaces]. Referativnaja informatsija o zakonchennyh nauchno-issledovatel'skih rabotah v vuzah Ukrainskoj SSR: Prikladnaja geometrija i inzhenernaja grafika [Abstract information about completed research works in universities of the Ukrainian SSR: Applied Geometry and Engineering Graphics]. Kiev: Vischa shkola Publ., 1977, I. 1, pp. 5-6. (in Russian)

23. Pavlov V.E. Dmitrij Ivanovich Kargin, 1880-1949 [Dmitry Ivanovich Kargin, 1880-1949]. St. Petersburg: Nauka Publ., 1998. 272 p. (in Russian)

24. Posvjanskij A.D. Pjat'desjat zadach povyshennoj trudnosti [Fifty problems of increased difficulty]. Kalinin: KPI Publ., 1970. 41 p. (in Russian)

25. Sal'kov N.A. Nachertatel'naja geometrija: bazovyj kurs [Descriptive geometry: the basic course]. Moscow: INFRA-M Publ., 2013. 184 p. (in Russian)

26. Sal'kov N.A. Nachertatel'naya geometriya - baza dlya komp'yuternoj grafiki [Descriptive geometry - the basis for computer graphics]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 2, pp. 37-47. (in Russian)

27. Sal'kov N.A. Nachertatel'naja geometrija - teorija izobrazhenij [Descriptive geometry - the theory of images]. Geometrija i grafika [Geometry and graphics]. 2016, V. 4, I. 4, pp. 41-47. (in Russian). DOI:https://doi.org/10.12737/22842.

28. Seregin V.I. Mezhdistsiplinarnye svjazi nachertatel'noj geometrii i smezhnyh razdelov vysshej matematiki [Interdisciplinary communication descriptive geometry and related sections of higher mathematics]. Geometrija i grafika [Geometry and graphics]. 2013, V. 1, I. 3-4, pp. 8-12. (in Russian). DOI:https://doi.org/10.12737/2124.

29. Seregin V.I. Nauchno-metodicheskie voprosy podgotovki studentov k olimpiadam po nachertatel'noj geometrii [Scientific and methodological issues of preparing students for olympiads in descriptive geometry]. Geometrija i grafika [Geometry and graphics]. 2017, V. 5, I. 1, pp. 73-81. (in Russian). DOI:https://doi.org/10.12737/25126.

Login or Create
* Forgot password?