Abstract and keywords
Abstract (English):
The paper discusses the results of the detection of seismic and infrasonic waves generated by a major earthquake and its aftershock (the moment magnitude MW=4.9 and MW=4.2 respectively), which occurred in northern Mongolia under Lake Hovsgool on December 5, 2014. The joint analysis of waveforms of seismic and infrasonic oscillations has shown that the signal recorded by the infrasound station of the Geophysical Observatory of the Institute of Solar-Terrestrial Physics SB RAS (ISTP SB RAS) is formed from sources of three generation types: local, secondary, and epicentral. This analysis enables us to propose a hypothesis of generation of epicentral infrasonic signal by flexural waves in an elastic ice membrane on the surface of Lake Hovsgool, which appear during the passage of seismic wave packets. This hypothesis explains the similarity between seismic and epicentral infrasonic signals, negative initial phase of epicentral infrasonic waves, and detection of a weak signal after a small-magnitude aftershock.

aftershock, earthquake, hypocenter, seismic wave, infrasonic wave, flexural wave, epicenter
Publication text (PDF): Read Download

1. Aki K., Richards P. Kolichestvennaya seismologiya [Quantitative Seismology]. Moscow, Mir Publ., 1983, vol. 1, 2, 880 p. (In Russian).

2. Alperovich L.S., Vugmeister B.O., Gokhberg M.B., Drobzhev V.I., Erushchenkov A.I., Ivanov E.A., Kudryavtsev V.P., Kulichkov S.N., Krasnov V.M., Matveev A.K., Mordukhovich M.I., Nagorsky P.M., Ponomarev E.A., Pokhotelov O.A., Tarashchuk Yu.E., Troitskaya V.A., Fedorovich G.V. On experience in modeling magnetospheric-ionospheric effects at seismic events. Doklady AN SSSR [Doklady Earth Sciences]. 1983, vol. 269, no. 3, pp. 573-578. (In Russian).

3. Arrowsmith S.J., Johnson J.B., Drob D.P., Hedlin M.A.H. The seismoacoustic wavefield: A new paradigm in studying geophysical phenomena. Rev. Geophys. 2010, vol. 48, RG4003. DOI:

4. Benioff H., Gutenberg B. Observations with electromagnetic microbarographs. Nature. 1939, vol. 144, pp. 478. DOI:

5. Bolt B.A. Seismic airwaves from the Great 1946 Alaskan Earthquake. Nature. 1964, vol. 202, pp. 1095-1096. DOI:

6. Brune J.N. Tectonic stress and the spectra of seismic hear waves from earthquakes. J. Geophys. Res. 1970, vol. 75, pp. 4997-5009.

7. Chernykh E.N., Klyuchevskii A.V., Ruzhich V.V. Comparative analysis of recordings of catastrophic East Japan Earthquake on rocky ground and Baikal Lake ice surface. Voprosy inzhenernoi seismologii [Problems of Engineering Seismology]. 2011, vol. 38, no. 4, pp. 29-38. (In Russian).

8. Chernykh E.N., Klyuchevskii A.V., Ruzhich V.V. Comparative analysis of recordings of close earthquakes on rocky ground and Baikal Lake ice surface. Seismicheskie pribory [Seismic instruments]. 2012, vol. 48, no. 4, pp. 55-66. (In Russian).

9. Dobrynina A.A., Sankov V.A., Chechelnitsky V.V., Tsydypova L.P., German V.I. Seismic sounding effects from Khuvsgul Lake earthquake of December 5, 2014 with Mw=4.9. Doklady akademii nauk [Doklady Earth Sciences]. 2017. vol. 477, no. 6, pp. 711-715. (In Russian).

10. Donn W.L., Posmentier E.S. Ground-coupled air waves from the great Alaskan earthquake. J. Geophys.Res. 1964, vol. 69, pp. 5357-5361. DOI:

11. Erushchenkov A.I., Ponomarev E.A., Sorokin A.G. On microbaroms in East Siberia. Issledovaniya po geomagnetizmu, aeronomii I fizike Solntsa [Res. on Geomagnetism, Aeronomy and Solar Physics]. 1979, is. 46, pp. 113-120. (In Russian).

12. Florensov N.A., Solonenko V.P. Gobi-Altai earthquake. Moscow, AN SSSR Publ., 1963. 393 p.

13. Golenetsky S.I., Misharina L.A. Seismicity and earthquake focal mechanisms in the Baikal rift zone. Tectonophys. 1978, vol. 45, no. 1, pp. 71-86.

14. Golitsyn G.S., Klyatskin V.I. Atmospheric oscillations caused by movements of Earth's surface. Izvestiya AN SSSR. Fizika atmosfery i okeana [Izvestiya, Atmospheric and Oceanic Physics]. 1967, vol. 3, no. 10, pp. 1044-1052. (In Russian).

15. Klyuchevskii A.V. Seismic moments of earthquakes in the Baikal rift zone as indicators of recent geodynamic processes. J. Geodynamics. 2004, vol. 37, no. 2, pp. 155-168.

16. Klyuchevskii A.V. Napryazheniya, deformatsii i seismichnost na sovremennom etape evolyutsii litosfery Baikalskoi riftovoi zony [Stresses, Deformations and Seismicity at a Current stage of Evolution of Baikal Rift Zone Lithosphere]. Thesis Dr. Sci. (Geol.-Min). Irkutsk, IEC SB RAS, 2008, 31 p. (In Russian).

17. Klyuchevskii A.V. Nonlinear geodynamics of the Baikal Rift System: an evolution scenario with triple equilibrium bifurcation. J. Geodynamics. 2010, vol. 49, no. 1, pp. 19-23. DOI:

18. Klyuchevskii A.V. Structures-attractors of riftogenes in the lithosphere Baikal rift system. Doklady akademii nauk [Doklady Earth Sciences]. 2011, vol. 437, no. 2, pp. 249-253. (In Russian).

19. Klyuchevskii A.V. Rifting attractor structures in the Baikal Rift System: Location and effects. J. Asian Earth Sciences. 2014, vol. 88, pp. 246-256. DOI:

20. Klyuchevskii A.V., Dem’yanovich V.M. Dynamic parameters of sources of strong earthquakes in Baikal rift zone. Fizika Zemli [Physics of Earth]. 2002, no. 2, pp. 55-66. (In Russian).

21. Le Pichon A., Guilbert J., Vallée M., Dessa J.X., Ulziibat M. Infrasonic imaging of the Kunlun Mountains for the Great 2001 China Earthquake. Geophys. Res. Lett. 2003, vol. 30, no. 15, pp. 1814. DOI:

22. Logatchev N.A., Florensov N.A. The Baikal system of rift valleys. Tectonophysics. 1978, vol. 45, pp. 1-13.

23. Mikumo R. Atmospheric pressure waves and tectonic deformation associated with the Alaskan earthquake of March 28, 1964. J. Geophys. Res. 1968, vol. 73, pp. 2009-2025. DOI:

24. Mutschlecner J.P., Whitaker R.W. Infrasound from earthquakes. J. Geophys. Res. 2005, vol. 110, pp. D01108. DOI:

25. Pasechnik I.P. Air waves generated during Gobi-Altai Earthquake on December 4, 1957. Izvestiya AN SSSR. Ser. Geofizicheskaya [Izvestiya, Geophysics]. 1959, no. 11, pp. 1687-1689. (In Russian).

26. Ponomarev E.A., Rudenko G.V., Sorokin A.G., Dmitrienko I.V., Lobycheva I. Yu., Baryshnikov A.K. The normal-mode method for probing the infrasonic propagation for purposes of CTBT. J. Atmos. Solar-Terr. Phys. 2006, vol. 68, pp. 559-614.

27. Rudenko G.V. Uralov A.M. Calculation of ionospheric effects due to acoustic radiation from an underground nuclear explosion. J. Atmos. Solar-Terr. Phys. 1995, vol. 57, no. 3, pp. 225-236.

28. Ryndin E.A., Lysenko I.E. Resheniya zadach matematicheskoi fiziki v sisteme Matlab [Solution of Mathematical Physics Problems with Matlab]. Taganrog, 2005, 65 p. (In Russian).

29. Sorokin A.G. Issledovaniya dalnego rasprostraneniya infrazvuka ot vzryvov i okeanskikh shtormov [Research into Long-distance Propagation of Infrasound from Explosions and Oceanic Storms]. Thesis Cand. Sci. (Phys&Math). ISTP SB RAS, 1995, 10 p. (In Russian).

30. Sorokin A.G., Ponomarev E.A. Assessing the state of the atmospheric acoustic channel using the IDEAS data on long-distance microbarom propagation. J. Atmos. Solar-Terr. Phys. 2008, vol. 70, pp. 1110-1121.

31. Sorokin A.G., Lobycheva I.Yu. On simulation of the atmospheric acoustic channel for some nuclear tests in former soviet test site Semipalatinsk. J. Atmos. Solar-Terr. Phys. 2011, vol. 73, pp. 1629-1635.

32. Sorokin A.G. On infrasonic radiation of Chelyabinsk meteoroid. Izvestiya RAN. Ser. fizicheskaya [Izvestiya, Physics]. 2016, vol. 80, no. 1. pp. 102-106. (In Russian).

33. Sorokin A.G., Dobrynina A.A. Comparative analysis of seimic and infrasonic signals from impulse sources and earthquakes. Izvestiya Irkutskogo gosudarstvennogo universiteta. Ser. Nauki o Zemle [The Bulletin of Irkutsk State University. Ser. Earth Sci.]. 2017. vol. 20, pp. 107-114. (In Russian).

34. Young J.M., Greene G.E. Anomalous infrasound generate by the Alaskan earthquake of March 1964. J. Acoust. Soc. Am. 1982, vol. 71, pp. 334-339. DOI:

35. URL: (accessed May 11, 2018).

36. URL: (accessed May 11, 2018).

Login or Create
* Forgot password?