Rubrics: REVIEWS
Abstract and keywords
Abstract (English):
In 2011, ISTP SB RAS began to deploy a routinely operating network of receivers of global navigation satellite system signals. To date, eight permanent and one temporal sites in the Siberian region are operating on a regular basis. These nine sites are equipped with 12 receivers. We use nine multi-frequency multi-system receivers of Javad manufacturer, and three specialized receivers NovAtel GPStation-6 designed to measure ionospheric phase and amplitude scintillations. The deployed network allows a wide range of ionospheric studies as well as studies of the navigation system positioning quality under various heliogeophysical conditions. This article presents general information about the network, its technical characteristics, and current state, as well as the main research problems that can be solved using data from the network.

ionosphere, GNSS, GPS, GLONASS, Beidou, total electron content, scintillations, Javad, NovAtel
Publication text (PDF): Read Download

1. Aarons J. Global positioning system phase fluctuations at auroral latitudes. J. Geophys. Res. 1997, vol. 102, A8, pp. 17219-17231. DOI:

2. Afraimovich E.L. Interferentsionnye metody zondirovaniya ionosfery [Interferometry techniques for ionospheric radiosensing]. Moscow, Nauka Publ., 1982. 198 p. (In Russian).

3. Afraimovich E.L., Perevalova N.P. GPS monitoring verkhei atmosfery Zemli [GPS monitoring of the Earth’s upper atmosphere]. Irkutsk, SC RRS SB RAMS Publ., 2006, 480 p. (In Russian).

4. Afraimovich E.L., Yasukevich Yu.V. Using GPS-GLONASS-GALILEO data and IRI modeling for ionospheric calibration of radio telescopes and radio interferometers. J. Atmos. Solar-Terr. Phys. 2008, vol. 70, no. 15, pp. 1949-1962. DOI:

5. Afraimovich E.L., Astafyeva E.I., Oinats A.V., Yasukevich Yu.V., Zhivetiev I.V. Global electron content: a new conception to track solar activity. Ann. Geophys. 2008, vol. 26, pp. 335-344. DOI:

6. Afraimovich E.L., Zherebtsov G.A., Perevalova N.P., Sankov V.A., Bashkuyev Yu.B., Kurkin V.I., Kovalenko V.A., Rakhmatulin R.A., Mikhalev A.V., Berngardt O.I., Aleshkov V.M., Lipko Yu.V., Pirog O.M., Polekh N.M., Voeykov S.V., Yasyukevich Yu.V., Ishin A.B., Edemskiy I.K., Podlesny A.V., Brynko I.G., Pashinin A.Yu., Molodykh S.I., Ivanova V.A., Astafyeva E.I., Polyakova A.S., Lukhnev A.V., Lukhneva O.F., Ashurkov S.V., Dobrynina A.A., Byzov L.M., Miroshnichenko A.I., Chernykh E.N., Dembelov M.G., Buyanova D.G., Naguslaeva I.B., Khaptanov V.B., Angarkhaeva L.Kh., Advokatov V.R., Balkhanov V.K., Ayurov D.B., Khomutov S.Yu., Zhivetiev I.V. Seismo-ionosphernye i seismoelectromagnitnye protsessy v Baykalskoi riftovoi zone [Seismoionospheric and Seismoelectromagnetic Processes in the Baikal Rift Zone]. Ed. G.A. Zherebtsov. Novosibirsk, SO RAN Publ., 2012. (In Russian).

7. Afraimovich E.L., Astafyeva E.I., Dem’yanov V.V., Edemskiy I.K., Gavrilyuk N.S., Ishin A.B., Kosogorov E.A., Leonovich L.A., Lesyuta O.S., Palamartchouk K.S., Perevalova N.P., Polyakova A.S., Smolkov G.Y., Voeykov S.V., Yasyukevich Yu.V., Zhivetiev I.V. Review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J. Space Weather and Space Climate. 2013, vol. 3, A27. DOI:

8. Alpatov V.V., Kunitsyn V.E., Lapshin V.B., Romanov A.A., Tasenko S.V. Experience of creation by Roshydromet of radiotomography network for the ionosphere research and monitoring. Geliogeofizicheskie issledovaniya [Heliogeophys. Res.]. 2012, iss. 2. pp. 60-71. (In Russian).

9. Arikan F., Shukurov S., Tuna H., Arikan O., Gulyaeva T.L. Performance of GPS slant total electron content and IRI-Plas-STEC for days with ionospheric disturbance. Geodesy and Geodynamics. 2016, vol. 7, no. 1, pp. 1-10. DOI: 2015.12.009.

10. Astafyeva E., Zakharenkova I., Huba J.D., Doornbos E., van den IJssel J. Global Ionospheric and thermospheric effects of the June 2015 geomagnetic disturbances: Multi-instrumental observations and modeling. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 11,716-11,742. DOI:

11. Bender M., Dick G., Ge M., Deng Z., Wickert J., Kahle H.-G., Raabe A., Tetzlaf G. Development of a GNSS water vapour tomography system using algebraic reconstruction techniques. Adv. Space Res. 2011, vol. 47, pp. 1704-1720. DOI: 10.1016/ j.asr.2010.05.034.

12. Bevis M., Businger S., Herring T.A., Rocken C., Anthes R.A., Ware R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. 1992, vol. 97, D14, pp. 15787-15801. DOI:

13. Devi M., Barbara A.K., Oyama K.-I., Chen C.-H. Earthquake induced dynamics at the ionosphere in presence of magnetic storm. Adv. Space Res. 2014, vol. 53, pp. 609-618. DOI:

14. Ding F., Wan W., Li Q., Zhang R., Song Q., Ning B., Liu L., Zhao B., Xiong B. Comparative climatological study of large-scale traveling ionospheric disturbances over North America and China in 2011-2012. J. Geophys. Res.: Space Phys. 2014, vol. 119, pp. 519-529. DOI:

15. Dong Z., Jin S. 3-D water vapor tomography in Wuhan from GPS, BDS and GLONASS observations. Remote Sens. 2018, vol. 10, no. 1, 62. DOI:

16. Dow J.M., Neilan R.E., Rizos C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geodesy. 2009, vol. 83, pp. 191-198. DOI: 10.1007/ s0019000803003.

17. Gulyaeva T.L., Stanislawska I. Derivation of a planetary ionospheric storm index. Ann. Geophys. 2008, vol. 26, pp. 2645-2648. DOI:

18. Hernández-Pajares M., Juan J.M., Sanz J., Orus R., Garcia-Rigo A., Feltens J., Komjathy A., Schaer S.C., Krankowski A. The IGS VTEC maps: a reliable source of ionospheric information since 1998. J. Geodesy. 2009, vol. 83, no. 3-4. pp. 263-275. DOI:

19. Hofmann-Wellenhof B., Lichtenegger H., Wasle E. GNSS-Global Navigation Satellite Systems. Springer, 2008. 531 p. DOI:

20. Jakowski N., Beniguel Y., De Franceschi G., Pajares M.H., Jacobsen K.S., Stanislawska I., Tomasik L., Warnant R., Wautelet G. Monitoring, tracking and forecasting ionospheric perturbations using GNSS techniques. J. Space Weather and Space Climate. 2012a, vol. 2, A22. DOI:

21. Jakowski N., Borries C., Wilken V. Introducing a Disturbance Ionosphere Index (DIX). Radio Sci. 2012b, vol. 47, RS0L14. DOI:

22. Jayachandran P.T., Langley R.B., MacDougall J.W., Mushini S.C., Pokhotelov D., Hamza A.M., Mann I.R., Milling D.K., Kale Z.C., Chadwick R., Kelly T., Danskin D.W., Carrano C.S. The Canadian high arctic ionospheric network (CHAIN). Radio Sci. 2009, vol. 44, RS0A03. DOI: 10.1029/ 2008RS004046.

23. Jin S., Occhipinti G., Jin R. GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth Sci. Rev. 2015, vol. 147, pp. 54-64. DOI: 2015.05.003.

24. Juan J.M., Sanz J., Rovira-Garcia A., González-Casado G., Ibáñez D., Perez R.O. AATR an ionospheric activity indicator specifically based on GNSS measurements. J. Space Weather and Space Climate. 2018, vol. 8, A14. DOI:

25. Kunitsyn V., Kurbatov G., Yasyukevich Yu., Padokhin A. Investigation of SBAS L1/L5 signals and their application to the ionospheric TEC studies. Geoscience and Remote Sensing Lett. 2015, vol. 12, no. 3, pp. 547-551. DOI: 2014.2350037.

26. Kunitsyn V.E., Padokhin A.M., Kurbatov G.A., Yasyukevich Yu.V., Morozov Yu.V. Ionospheric TEC estimation with the signals of various geostationary navigational satellites. GPS Solutions. 2016, vol. 20, no. 4, pp. 877-884. DOI:

27. Lanyi G.E., Roth T. A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci. 1988, vol. 23, no. 4, pp. 483-492. DOI: i004p00483.

28. Larson K.M., Nievinski F.G. GPS snow sensing: results from the EarthScope Plate Boundary Observatory. GPS Solutions. 2013, vol. 17, pp. 41-52. DOI:

29. Löfgren J.S., Haas R., Johansson J.M. Monitoring coastal sea level using reflected GNSS signals. Adv. Space Res. 2011, vol. 47, no. 2, pp. 213-220. DOI:

30. Lukhnev A.V., San’kov V.A., Miroshnichenko A.I., Ashurkov S.V., Calais E. GPS rotation and strain rates in the Baikal-Mongolia region. Russian Geology and Geophysics. 2010, vol. 51, no. 7, pp. 785-793. DOI:

31. Lukhneva O.F., Dembelov M.G., Lukhnev A.V. Determination of atmospheric water content from meteorological and GPS data. Geodinamika i tektonofizika [Geodynamics & Tectonophysics]. 2016, vol. 7, no. 4, pp. 545-553. DOI: 10.5800/ GT-2016-7-4-0222. (In Russian).

32. Mannucci A.J., Wilson B.D., Yuan D.N., Ho C.M., Lindqwister U.J., Runge T.F. A global mapping technique for GPS-derived ionospheric TEC measurements. Radio Sci. 1998, vol. 33, no. 3, pp. 565-582. DOI:

33. Mazzotti S., Dragert H., Henton J., Schmidt M., Hyndman R., James T., Lu Y., Craymer M. Current tectonics of northern Cascadia from a decade of GPS measurements. J. Geophys. Res. 2003, vol. 108, no. B12, 2554. DOI:

34. Mitchell C.N., Spencer P.S.J. A three-dimensional time-dependent algorithm for ionospheric imaging using GPS. Ann. Geophys. 2003, vol. 46, no. 4, pp. 687-696. DOI:

35. Mitchell C.N., Alfonsi L., De Franceschi G., Lester M., Romano V., Wernik A.W. GPS TEC and scintillation measurements from the polar ionosphere during the October 2003 storm. Geophys Res Lett. 2005, vol. 32, L12S03. DOI: 10.1029/ 2004GL021644.

36. Nesterov I.A., Kunitsyn V.E. GNSS radio tomography of the ionosphere: The problem with essentially incomplete data. Adv. Space Res. 2011, vol. 47, no. 10, pp. 1789-1803. DOI: 10.1016/ j.asr.2010.11.034.

37. Nesterov I.A., Andreeva E.S., Padokhin A.M., Tumanova Yu.S., Nazarenko M.O. Ionospheric perturbation indices based on the low- and high-orbiting satellite radio tomography data. GPS Solutions. 2017, vol. 21, no. 4, pp. 1679-1694. DOI:

38. Olemskoy S.V. Implementating the project «National Heliogeophysical Center of RAS» project development. Scientific report at Extended Meeting of SB RAS Presidium on December 21, 2017. Available from: files/files/prezidium20171221/1_olemskoy.pdf (accessed October 1, 2018). [In Russian].

39. Otsuka Y., Suzuki K., Nakagawa S., Nishioka M., Shiokawa K., Tsugawa T. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann. Geophys. 2013, vol. 31, no. 2, pp. 163-172. DOI:

40. Ovodenko V.B., Trekin V.V., Korenkova N.A., Klimenko M.V. Investigating range error compensation in UHF radar through IRI-2007 real-time updating: Preliminary results. Adv. Space Res. 2015, vol. 56, no. 5, pp. 900-906. DOI:

41. Padokhin A.M., Kurbatov G.A., Andreeva E.S., Nesterov I.A., Nazarenko M.O., Berbeneva N.A., Karlysheva A.V. Estimation of sea level variations with GPS/GLONASS-reflectometry technique. Proc. of PIE. 2017, vol. 104667J: 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. DOI:

42. Perevalova N.P., Shestakov N.V., Voeykov S.V., Takahashi H., Guojie M. Ionospheric disturbances in the vicinity of the Chelyabinsk meteoroid explosive disruption as inferred from dense GPS observations. Geophys. Res. Lett. 2015, vol. 42, pp. 6535-6543. DOI:

43. Pi X., Mannucci A.J., Lindqwister U.J., Ho C.M. Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys. Res. Lett. 1997, vol. 24, pp. 2283−2286. DOI:

44. Priego E., Jones J., Porres M.J., Seco A. Monitoring water vapour with GNSS during a heavy rainfall event in the Spanish Mediterranean area, Geomatics. Natural Hazards and Risk. 2017, vol. 8, no. 2, pp. 282-294. DOI: 705.2016.1201150.

45. Ruffini G., Flores A., Rius A. GPS tomography of the ionospheric electron content with a correlation functional. IEEE Transactions on Geoscience and Remote Sensing. 1998, vol. 36, no. 1, pp. 143-153. DOI:

46. Sankov V.A., Lukhnev A.V., Miroshnitchenko A.I., Dobrynina A.A., Ashurkov S.V., Byzov L.M., Dembelov M.G., Calais E., Déverchère J. Contemporary horizontal movements and seismicity of the south Baikal basin (Baikal rift system). Izvestiya, Physics of the Solid Earth. 2014, vol. 50, no. 6, pp. 785-794. DOI:

47. Segall P., Davis J.L. GPS applications for geodynamics and earthquake studies. Ann. Rev. Earth and Planetary Sci. 1997, vol. 25, pp. 301-336. DOI:

48. Schaer S., Beutler G., Rothacher M. Mapping and predicting the ionosphere. Proc. IGS AC Workshop, Darmstadt, Germany, February 9-11, 1998, pp. 307-320.

49. Schunk R.W., Scherliess L., Sojka J.J., Thompson D. Global Assimilation of Ionospheric Measurements (GAIM). Radio Sci. 2004, vol. 39, RS1S02. DOI:

50. Shanmugam S., Jones J., MacAulay A., van Dierendonck A.J. Evolution to Modernized GNSS Ionospheric Scintillation and TEC Monitoring. IEEE/ION PLANS 2012 - April 24-26, Myrtle Beach, SC, Session B2A. 2012. Available from: (accessed October 1, 2018).

51. Shestakov N.V., Gerasimenko M.D., Takahashi H., Kasahara M., Bormotov V.A., Bykov V.G., Kolomiets A.G., Gerasimov G.N., Vasilenko N.F., Prytkov A.S. Present tectonics of the southeast of Russia as seen from GPS observations. Geophys. J. International. 2011, vol. 184, no. 2, pp. 529-540. DOI:

52. Solomentsev D., Khattatov B., Codrescu M., Titov A., Yudin V., Khattatov V., Ionosphere state and parameter estimation using the Ensemble Square Root Filter and the global three-dimensional first-principle model. Space Weather. 2012, vol. 10, S07004. DOI:

53. Sorokin A.A., Korolev S.P., Shestakov N.V., Malkovsky S.I., Tsoy G.I., Pupatenko V.V. Work administration with Global Navigation Satellite System data for complex study of modern geodynamic processes in the south of Far East of Russia. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current Problems in Remote Sensing of the Earth from Space]. 2017, vol. 14, no. 3, pp. 158-172. DOI: (In Russian).

54. Tsugawa T., Nishioka M., Ishii M., Hozumi K., Saito S., Shinbori A., Otsuka Y., Saito A., Buhari S., Abdullah M., Supnithi P. Total Electron Content Observations by Dense Regional and Worldwide International Networks of GNSS. J. Disaster Res. 2018, vol. 13, no. 3, pp. 535-545. DOI:

55. Voeykov S.V., Berngardt O.I., Shestakov N.V. Use of the index of TEC vertical variation disturbance in studying ionospheric effects of the Chelyabinsk meteorite. Geomagnetism and Aeronomy. 2016, vol. 56, no. 2, pp. 219-228. DOI: 10.1134/ S0016793216020122.

56. Yasyukevich Yu.V., Mylnikova A.A., Ivanov V.B. Estimating the absolute total electron content based on single-frequency satellite radio navigation GPS/GLONASS data. Solar-Terr. Phys. 2017a, vol. 3, no. 1, pp. 128-137. DOI: f972906c64a5.33470182.

57. Yasyukevich Yu.V., Ovodenko V.B., Mylnikova A.A., Zhivetiev I.V., Vesnin A.M., Edemskiy I.K., Kotova D.S. Methods of compensation of ionospheric component error of radio communication systems using GPS/GLONASS total electron content data. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser. Radiotekhnicheskie i infokommunikatsionnye sistemy [Bull. of Volga State University of Technology. Ser. Radio Engineering and Infocommunication Systems]. 2017b, vol. 2, no. 34, pp. 19-31. DOI: (In Russian).]

58. Yasyukevich Yu.V., Zhivetiev I.V., Kiselev A.V., Edemskiy I.K., Syrovatsky S.V., Shabalin A.S., Vesnin A.M. Tool for Creating Maps of GNSS Total Electron Content. Proc. Progress in Electromagnetics Research Symposium. Toyama, Japan, 1-4 August, 2018, 180330063056.

59. Yeh K.C., Liu C.H. Radio wave scintillation in the ionosphere. Proc. of IEEE. 1982, vol. 70, no. 4, pp. 324-360. DOI:

60. Zhou F., Dong D., Li W., Jiang X., Wickert J., Schuh H. GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solutions. 2018, vol. 22, 33. DOI:

61. Zolesi B., Belehaki A., Tsagouri I., Cander Lj.R. Real-time updating of the Simplified Ionospheric Regional Model for operational applications. Radio Sci. 2004, vol. 39, no. 2. RS2011. DOI:

62. URL: (accessed October 1, 2018).

63. URL: (accessed October 1, 2018).

64. URL: (accessed October 1, 2018).

65. URL: (accessed October 1, 2018).

66. URL: (accessed October 1, 2018).

67. URL: (accessed October 1, 2018).

68. URL: (accessed October 1, 2018).

69. URL: (accessed October 1, 2018).

70. URL: (accessed October 1, 2018).

71. URL: (accessed October 1, 2018).

72. URL: (accessed October 1, 2018).

73. URL: (accessed October 1, 2018).

Login or Create
* Forgot password?