SYNTHESIS OF EQUATIONS FOR RULED SURFACES WITH TWO CURVILINEAR AND ONE RECTANGULAR DIRECTRIXES
Abstract and keywords
Abstract (English):
Ruled surfaces have long been known and are widely used in construction, architecture, design and engineering. And if from the technical point of view the developable surfaces are more attractive, then architecture and design successfully experiment with non-developable ones. In this paper are considered non-developable ruled surfaces with three generators, two of which are curvilinear ones. According to classification, such surfaces are called twice oblique cylindroids. In this paper has been proposed an approach for obtaining of twice oblique cylindroids by immersing a curve in a line congruence of hyperbolic type. Real directrixes of such congruence are a straight line and a curve. It has been proposed to use helical lines (cylindrical and conical ones) as a curvilinear directrix, and a helical line’s axis as the straight one. Then the congruence’s rectilinear ray will simultaneously intersect the helical line and its axis. Congruence parameters are the line’s pitch and the guide cylinder or cone’s radius. The choice of the curvilinear directrix is justified by the fact that the helical lines have found a wide application in engineering and architecture. Accordingly, the helical lines based surfaces can have a great potential. In this paper have been presented parametric equations of the considered congruences. The congruence equations have been considered from the point of view related to introducing a new curvilinear coordinate system. The obtained system’s coordinate surfaces and coordinate lines have been also studied in the paper. To extract the surface, it is necessary to immerse the curve in the congruence. To synthesize the equations has been used a constructive-parametric method based on the substitution of the immersed line’s parametric equations in the congruence equations according to a special algorithm. In the paper have been presented 5 examples for the synthesis of ruled surfaces equations such as the twice oblique cylindroid and their visualization. The method is universal and algorithmic, and therefore easily adaptable for the automated construction of surfaces with variable parameters of both the congruence and the immersed line.

Keywords:
ruled surface, lined congruence, twice oblique cylindroids, helical line, parametric equations.
Text

Линейчатые поверхности давно привлекают внимание геометров, архитекторов, машиностроителей и дизайнеров. Наиболее изученными и применяемыми из неразвертываемых поверхностей являются геликоиды,  иперболический параболоид, однополостной гиперболоид и поверхности Каталана [1; 5; 19; 22; 27–29], которые можно увидеть практически повсюду. Согласно классической классификации в русскоязычной учебной литературе, линейчатые поверхности по количеству направляющих делятся на три типа: с тремя, двумя и одной направляющей. В свою очередь, линейчатые поверхности с тремя направляющими делятся на [5]: 1) поверхность общего вида — с тремя криволинейными направляющими; 2) дважды косой цилиндроид — с двумя криволинейными и одной прямолинейной направляющей; 3) дважды косой коноид — с двумя прямолинейными и одной криволинейной направляющей; 4) однополостной гиперболоид — с тремя прямолинейными направляющими. Линейчатая поверхность с тремя направляющими фактически представляет собой поверхность линейчатой конгруэнции иперболического типа, где две из трех направляющих являются директрисами, а третья — погружаемой в линейчатую конгруэнцию кривой. Таким образом, дважды косые коноиды являются поверхностями гиперболической конгруэнции прямых Кг (1,1), а однополостной гиперболоид является ее частным случаем при погружении прямой. Особое внимание конгруэнциям начали уделять в период развития проективной геометрии. В начале ХХ в. было построено множество натурных наглядных моделей по представлению пространственных кривых, являющихся линиями пересечения поверхностей, линейчатых поверхностей и линейчатых конгруэнций и их поверхностей (рис. 1). Практическое применение поверхностей конгруэнций прямых стало возможным с развитием синтетической и конструктивной геометрии [2; 6; 10–14]. В настоящее время изучение построения и визуализации таких поверхностей ведется как с точки зрения создания программно реализуемых алгоритмов проективной геометрии [7; 8; 19–21; 23; 25–30], так и с точки зрения получения параметрических уравнений конгруэнций и их поверхностей конструктивно-параметрическим методом [3; 4; 9; 15–18; 24]. В работах [18; 31] был предложен способ получения параметрических уравнений гиперболической конгруэнции прямых Кг (1,1) и ее поверхностей, а также рассмотрены некоторые частные случаи управления параметрами формы. Эти поверхности являются дважды косыми коноидами. Целью настоящей работы является получение параметрических уравнений линейчатых поверхностей, полученных погружением кривой в конгруэнцию гиперболического типа, в которой директрисами являются прямая и винтовая линии (цилиндрическая и коническая с постоянным шагом), а лучом — прямая. Данный тип поверхности относится к категории дважды косых цилиндроидов.

References

1. Ivanov V.N., Krivoshapko S.N., Romanova V.A. Osnovy` razrabotki i vizualizacii ob``ektov analiticheskix poverxnostej i perspektivy` ix ispol`zovaniya v arxitekture i stroitel`stve [The Principles for Development and Visualization of Analytical Surfaces’ Objects and Perspectives for Their Using at Architecture and Building Constructions]. Geometrija i grafika [Geometry and graphics]. 2017, V. 5, I. 4, pp. 3-14. DOI:https://doi.org/10.12737/article_5a17f590be3f51.37534061. (in Russian)

2. Ivanov G., Dmitrieva I.M. Princip dvojstvennosti - teoreticheskaya baza vzaimosvyazi sinteticheskix i analiticheskix sposobov resheniya geometricheskix zadach [The Duality Principle Is the Theoretical Basis of Interrelation of Synthetic and Analytical Methods of Solving Geometric Problems]. Geometrija i grafika [Geometry and graphics]. 2016, V. 4, I. 3, pp. 3-10. DOI:https://doi.org/10.12737/21528. (in Russian)

3. Kokareva Ya.A. Analiticheskaya model` poverxnostej na osnove koordinacii prostranstva vintovy`mi i e`llipticheskimi liniyami [Analytical Model of Surfaces based on the Space’s Coordination by Helix and Ellipses]. Prikladnaya matematika i voprosy` upravleniya [Applied mathematics and control sciences]. 2017, I. 1, pp. 27-36. (in Russian)

4. Kokareva Ya.A. Parametricheskie uravneniya kongrue`ncii pryamy`x, zadannoj fokal`ny`mi okruzhnostyami [Parametric equations for the congruence of lines defined by the focal circles]. Nauchnoe obozrenie [Scientific Review]. 2014, I. 11, pp. 689-692. (in Russian)

5. Krivoshapko S.N., Ivanov V.N. Enciklopedija analiticheskih poverhnostej [Encyclopedia of analytical surfaces]. Moscow, Librokom Publ., 2010. 560 p. (in Russian)

6. Mihajlenko V.E., Obuhova V.S., Podgornyj A.L. Formoobrazovanie obolochek v arhitekture [Forming of cover in architecture]. Kiev, Budіvel'nik Publ., 1972. 208 p. (in Russian)

7. Nesvidomin V.N. Komp’yuternі modelі sintetichnoi geometrіi. Dokt. Diss. [Computer models of synthetic geometry. Doct. Diss.]. Kyiv, Kyiv National University of Building and Architecture Publ., 2008. 435 p. (in Ukrainian)

8. Nesvіdomіn V.M. Konstruyuvannya lіnіjchatix poverxon` metodom z’єdnannya proektivnix tochkovix ryadіv [Designing of line surfaces by the method of connecting projective point series]. Geometrichne ta komp’yuterne modelyuvannya [Geometric and computer simulation]. Kharkiv, HDUHT Publ., 2004, V. 8, pp. 43-47. (in Ukrainian)

9. Nesnov D.V. Kongrue`nciya vintovy`x linij v normal`ny`x konicheskix koordinatax [Congruence helix in a normal conical coordinates]. Nauchny`j al`manax [Science Almanac]. 2016, V. 11-2 (25), pp. 186-188. DOI:https://doi.org/10.17117/na.2016.11.02.186. (in Russian)

10. Obuhova V.S. Dvuosevoe proektirovanie krivy`h linij [Two-axis design of line curves]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, Budіvel`nik Publ., 1965. V. I, pp. 39-47. (in Russian)

11. Obuhova V.S., Podgorny`j A.L., Sroka K. Modelirovanie linejchaty`h poverxnostej 4-go poryadka proekcionny`m sposobom [Modeling of 4th order ruler surfaces in a projection way]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, KDTUBA Publ., 1996, V. 60, pp. 23-27. (in Russian)

12. Podgorny`j A.L. Dual`ny`e kongrue`ncii i voprosy` ix konstruktivnogo zadaniya i otobrazheniya [Dual congruences and questions of their constructive task and mapping]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, Budіvel`nik Publ., 1968, V. VII, pp. 3-10. (in Russian)

13. Podgorny`j A.L. Konstruirovanie poverxnostej obolochek po zadanny`m usloviyam na osnove vy`deleniya ix iz kongrue` ncij pryamy`h [The construction of shell surfaces with given conditions on the basis of their separation from congruences of straight lines]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, Budіvel`nik Publ., 1969, V. VIII, pp. 17-28. (in Russian)

14. Podgorny`j A.L. Proekcionny`j sposob zadaniya kongrue`ncij mnogoznachny`m sootvetstviem ploskix polej i konstruirovanie iz nix poverxnostej [A projection method for specifying congruences by multivalued correspondence of plane fields and constructing surfaces from them]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, Budіvel`nik Publ., 1971, V. 13, pp. 98-100. (in Russian)

15. Simenko O.V. Proekczіyuvannya promenyami kongruenczії cilіndrichnix gvintovix lіnіj stalogo kroku [Projection of the congruence rays of the cylindrical spiral lines of a steady step]. Pracі Tavrіjs'kogo derzhavnogo agrotehnologіchnogo unіversitetu [Proc. Of Tavria State Agrotechnological University]. 2004, V. 4, I. 23, pp. 86-91. (in Ukrainian)

16. Skidan I.A., Zhurba N.V. Special`naya parametrizaciya kongrue`ncii pryamy`h [Special parametrization of the congruence of lines]. Prikladnaya geometriya i inzhenernaya grafika [Applied Geometry and Engineering Graphics]. Kiev, KISI Publ., 1993, V. 55, pp. 35-40. (in Russian)

17. Skіdan І.A. Zagal`na analіtichna teorіya prikladnogo formoutvorennya na osnovі global`noi parametrizaczіi [General analytical theory of applied formulation based on global parametrization]. Prykladna geometriya ta inzhenerna grafika. Pracі Tavrіjs`koi derzhavnoi agrotexnіchnoi akademіi [Applied Geometry and Engineering Graphics. Proc. of Tavria State Agrotechnological Academy]. 2001, V. 4, I. 13, pp. 21-28. (in Ukrainian)

18. Skіdan І.A., Kokareva Ya.A. Parametrichnі rіvnyannya gіperbolіchnoi kongruenczіi pryamyh ta ix poverxon` [Parametric equations of hyperbolic congruences of straight lines and their surfaces]. Prykladna geometriya ta inzhenerna grafika. Pracі Tavrіjs'kogo derzhavnogo agrotehnologіchnogo unіversitetu [Applied Geometry and Engineering Graphics. Proc. Of Tavria State Agrotechnological University]. 2010, V. 4, I. 46, pp. 27-32. (in Ukrainian)

19. Kheyfets A.L., Loginovskij A.N. 3D-modeli linejchaty`x poverxnostej s tremya pryamolinejny`mi napravlyayushhimi [3D-Models of ruled surfaces with three rectilinear guides]. Vestnik YuUrGU. Seriya «Stroitel`stvo i arhitektura» [Bulletin of SUSU. Series «Construction Engineering and Architecture»]. 2008, I. 25, pp. 51-56. (in Russian)

20. Abramczyk J. Method for Parametric Shaping Architectural Free Forms Roofed with Transformed Shell Sheeting. IOP Conf. Series: Materials Science and Engineering, 2017. V. 245. DOI:https://doi.org/10.1088/1757-899X/245/5/052026. URL: http://iopscience.iop.org/article/10.1088/1757-899X/245/5/052026/pdf/

21. Ali A. T., Abdel Aziz H. S., Sorour A. H. Ruled surfaces generated by some special curves in Euclidean 3-Space. Journal of the Egyptian Mathematical Society, 2013. V. 21, I. 3, pp. 285-294. DOI:https://doi.org/10.1016/j.joems.2013.02.004.

22. Flöry S., Pottmann H. Ruled Surfaces for rationalization and design in architecture. LIFE in:formation. On Responsive Information and Variations in Architecture. Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), 2010. Pp. 103-109.

23. Hagen H., Hahmann S., Schreiber T., Nakajima Y., Wordenweber B., Hollemann-Grundstedt P. Surface interrogation algorithms. IEEE Computer Graphics and Applications, 1992. V. 12, I. 5, pp. 53-60.

24. Maleček K., Szarková D. A Method for Creating Ruled Surfaces and its Modifications. KoG, 2001. V. 6-2001/02, pp. 59-66. Available at: http://master.grad.hr/hdgg/kog_stranica/kog6gif/kog6_malecekszarkova.pdf/

25. Odehnal B., Pottmann H. Computing with discrete models of ruled surfaces and line congruences. Electron. J. Comput. Kinematics, 2002. V. 1-1. Available at: http://www-sop.inria.fr/coprin/EJCK/Vol1-1/20_pottmann.pdf/

26. Odehnal B. On rational Isotropie congruences of lines. Journal of Geometry, 2004. V. 8, pp. 126-138.

27. Odehnal B. Subdivision algorithms for ruled surfaces. Journal for Geometry and Grafics, 2008. V. 12, I. 1, pp. 1-18.

28. Ravani B., Wang J. Computer aided geometric design of line constructs. ASME J. Mech. Design Environment and Plannin, 1991. V. 113, pp. 363-371.

29. Wallner J., Pottmann H. Computational line geometry. Springer Publ., 2010. 564 p.

30. Wang J., Jiang C., Bompas P., Wallner J., Pottmann H. Discrete Line Congruences for Shading and Lighting. Eurographics Symposium on Geometry Proc., 2013. V. 32 (5). Available at: http://www.geometrie.tugraz.at/wallner/lineconsgp.pdf/

31. Zamyatin A.V., Kokareva Y.A. Designing of architectural shells on the basis of linear hyperbolic congruence surfaces. IOP Conference Series: Materials Science and Engineering, 2017. V. 262. DOI:https://doi.org/10.1088/1757-899X/262/1/012113. Available at: http://iopscience.iop.org/article/10.1088/1757-899X/262/1/012113/pdf/

Login or Create
* Forgot password?