HELIOLATITUDE REGULARITIES OF MAGNETICALLY DISTURBED DAYS WITH DAILY AVERAGE GEOMAGNETIC INDEX DST<–100 NT
Abstract and keywords
Abstract (English):
This paper considers storm days for a period 1966–2015 when the daily average geomagnetic Dst index was <–100 nT. The distribution of the number of days with a high daily average Dst is shown to depend on Earth’s heliolatitude φ: the number of days increases with the absolute value of φ in both solar hemispheres. It is found, as expected, that the seasonal distribution of storm days with Dst<–100 nT has equinoctial maxima. Moreover, there is a noticeable increase in the number of such days in July and November. It is noted that at Earth’s heliolatitudes 4.1°–5.0° there is a sharp increase in the number of storm days. It is established that this increase occurs during storm events in July and November, which stand out against the seasonal distribution of highly disturbed days.

Keywords:
geomagnetic Dst index, geomagnetic storm, seasonal variation of magnetic activity, Earth’s heliolatitude
Text
Publication text (PDF): Read Download
References

1. Akasofu S.-I. Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 1981, vol. 28, iss. 2, pp. 121-190. DOI:https://doi.org/10.1007/BF00218810.

2. Bartels J. Terrestrial magnetic activity and its relations to solar phenomena. Terrestrial Magnetism. 1932, vol. 37, pp. 1-52.

3. Clúa de Gonzalez A.L., Silbergleit V.M., Gonzalez W.D., Tsurutani B.T. Irregularities in the semiannual variation of the geomagnetic activity. Adv. Space Res. 2002, vol. 30, iss. 10, pp. 2215-2218.

4. Cortie A.L. Sunspots and terrestrial magnetic phenomena, 1898-1911. Monthly Notices of the Royal Astronomical Society.1912, vol. 73, pp. 52-60.

5. Echer E., Gonzalez W.D., Tsurutani B.T., Clúa de Gonzalez A.L. Interplanetary conditions causing intense geomagnetic storms (Dst≤−100 nT) during solar cycle 23 (1996-2006). J. Geophys. Res. 2008, vol. 113, A05221. DOI:https://doi.org/10.1029/2007 JA012744.

6. Echer E., Gonzalez W.D., Tsurutani B.T. Statistic studies of geomagnetic storms with peak Dst≤-50 nT from 1957 to 2008. J. Atmos. Solar-Terr. Phys. 2011, vol. 73, iss. 11-12, pp. 1454-1459. DOI:https://doi.org/10.1016/j.jastp.2011.04.021.

7. Feldstein Y.I., Dremukhina L.A., Levitin A.E., Mall U., Alexeev I.I., Kalegaev V.V. Energetics of the magnetosphere during the magnetic storm. J. Atmos. Solar-Terr. Phys. 2003, vol. 65, iss. 4, pp. 429-446. DOI:https://doi.org/10.1016/S1364-6826(02)00339-5.

8. Gonzalez W.D., Joselyn J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T., Vasyliunas V.M. What is a geomagnetic storm? J. Geophys. Res. 1994, vol. 99, pp. 5771-5792. DOI:https://doi.org/10.1029/93JA02867

9. Gonzalez W.D., Echer E., Tsurutani B.T., Clúa de Gonzalez A.L., Lago A.D. Interplanetary origin of intense, superintense and extreme geomagnetic storms. Space Sci. Rev. 2011, vol. 158, pp. 69-89. DOI:https://doi.org/10.1007/s11214-010-9715-2.

10. Gopalswamy N. Halo coronal mass ejections and geomagnetic storms. Earth, Planets and Space. 2009, vol. 61, pp. 1-3. DOI:https://doi.org/10.1186/BF03352930.

11. Kovalenko V.A. Solnechnyi veter [Solar Wind]. Moscow, Nauka Publ., 1983. 271 p. (In Russian).

12. Mursula K., Tanskanen E., Love J.J. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: implications for semiannual variation and solar hemispheric asymmetry. Geophys. Res. Lett. 2011, vol. 38, L06104. DOI:https://doi.org/10.1029/2011GL046751.

13. Nikolaeva N.S., Yermolaev Yu.I., Lodkina I.G. Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams. Geomagnetism and Aeronomy. 2011, vol. 51, no. 1, pp. 49-65. DOI:https://doi.org/10.1134/S0016793211010099.

14. Nikolaeva N.S., Yermolaev Yu.I., Lodkina I.G. Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams. Geomagnetism and Aeronomy. 2011, vol. 51, no. 1, pp. 49-65. DOI:https://doi.org/10.1134/S0016793211010099

15. Uwamahoro J., McKinnell L.-A. Solar and interplanetary precursors of geomagnetic storms in solar cycle 23. Adv. Space Res. 2013, vol. 51, iss. 3, pp. 395-410. DOI:https://doi.org/10.1016/j. asr.2012.09.034.

16. Yanovskii B.M. Zemnoi magnetizm [Terrestrial magnetism]. Leningrad, Leningrad State University Publ., 1978. 592 p. (In Russian).

17. Yermolaev Yu.I., Yermolaev M.Yu. Statistical relationships between solar, interplanetary, and geomagnetospheric disturbances, 1976-2000. Cosmic Res. 2002. vol. 40, no. 1, pp. 1-14.

18. Yermolaev Y.I., Yermolaev M.Y. Comment on ‘‘Interplanetary origin of intense geomagnetic storms (Dst<-100 nT) during solar cycle 23’’ by W. D. Gonzalez et al. Geophys. Res. Lett. 2008, vol. 35, L01101. DOI:https://doi.org/10.1029/2007GL030281.

19. Yermolaev Y.I., Lodkina I.G., Nikolaeva N.S., Yermolaev M.Y., Riazantseva M.O. Some problems of identifying types of large-scale solar wind and their role in the physics of the magnetosphere. Cosmic Res. 2017, vol. 55, no. 3, pp. 178-189. DOI:https://doi.org/10.1134/S0010952517030029.

20. Watari S. Geomagnetic storms of cycle 24 and their solar sources. Earth, Planets and Space. 2017, vol. 69, article 70. DOI:https://doi.org/10.1186/s40623-017-0653-z.

21. URL: http://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html (accessed April 12, 2018).

22. URL: http://omniweb.gsfc.nasa.gov (accessed April 12, 2018).

23. URL: http://sidc.oma.be (accessed April 12, 2018).

Login or Create
* Forgot password?