Abstract and keywords
Abstract (English):
The method of digital difference filters is applied to the data analysis of SATI observations of hydroxyl nightglow intensity and rotational temperature at altitudes 85–90 km over Almaty (43°03' N, 76°58' E), Kazakhstan, in 2010–2017. We examine seasonal and interannual variations in monthly average values and standard deviations of variations with periods 0.4–5.4 hrs, which may be associated with internal gravity waves in the mesopause region. The monthly average temperature near the mesopause has a maximum in winter and a minimum in June. The monthly average intensity has an additional maximum in June. Standard deviation of mesoscale rotational temperature variations and characteristics of internal gravity waves are maximum in spring and autumn. The spring maximum of mesoscale OH emission intensity variations is shifted to June. Interannual variations and multi-year trends of OH rotational temperature and emission intensity may differ in detail. This may be connected with seasonal and long-term variations in the complex system of the photochemical processes, which produce the OH nightglow.

upper atmosphere, nightglows, hydroxyl, intensity, rotational temperature, climatology, seasonal variations, trends, mesoscale variability, internal gravity waves
Publication text (PDF): Read Download

1. Ammosov P., Gavrilyeva G., Ammosova A., Koltovskoi I. Response of the mesopause temperatures to solar activity over Yakutia in 1999-2013. Adv. Space Res. 2014, vol. 54, pp. 2518–2524. DOI: 10.1016/j.asr.2014.06.007.

2. Aushev V.M., Pogoreltsev A.I., Vodyannikov V.V., Wiens R.H., Shepherd G.G. Results of the airglow and temperature observations by MORTI at the Almaty site (43.05 N, 76.97 E). Physics and Chemistry of the Earth. (Part B). 2000, vol. 25, no. 5–6, pp. 409–415. DOI: 10.1016/S1464-1909(00) 00035-6.

3. Gavrilov N.M., Shved G.M. A study of internal gravity waves in the lower thermosphere based on skyglow isophots. Izvestiya AN SSSR. Fizika atmosfery i okeana [Izvestiya, Atmospheric and Oceanic Physics]. 1982, vol. 18, no. 1, pp. 5–12.

4. Gavrilov N.M., Manson A.H., Meek C.E. Climatological monthly characteristics of middle atmosphere gravity waves (10 min – 10 hr) during 1979–1993 at Saskatoon. Ann. Geophys. 1995, vol. 13, no. 1, pp. 285–295. DOI: 10.1007/s00585-995-0285-7.

5. Gavrilov N.M., Jacobi Ch., Kurschner D. Climatology of ionospheric drift perturbations at Collm, Germany. Adv. Space Res. 2001, vol. 27, no. 10, pp. 1779–1784. DOI: 10.1016/S0273-1177(01)00339-8.

6. Gavrilov N.M., Fukao S., Nakamura T., Jacobi C., Kürschner D., Manson A. H., Meek C.E. Comparative study of interannual changes of the mean winds and gravity wave activity in the middle atmosphere over Japan, Central Europe and Canada. J. Atmos. Solar-Terr. Phys. 2002a, vol. 64, no. 8–11, pp. 1003–1010. DOI: 10.1016/S1364-6826(02)00055-X.

7. Gavrilov N.M., Shiokawa K., Ogawa T. Seasonal variations of medium-scale gravity wave parameters in the lower thermosphere obtained from SATI observations at Shigaraki, Japan. J. Geophys. Res. 2002b, vol. 107, no. D24, 4755. DOI: 10.1029/2001JD001469.

8. Gavrilov N.M., Riggin D.M., Fritts D.C. Medium-frequency radar studies of gravity-wave seasonal variations over Hawaii (22° N, 160° W). J. Geophys. Res. 2003, vol. 108, no. D20, 4655. DOI: 10.1029/2002JD003131.

9. Gavrilyeva G.A., Ammosov P.P., Koltovskoi I.I. Semidiurnal thermal tide in the mesopause region over Yakutia. Geomagnetism and Aeronomy. 2009, vol. 49, no. 1, pp. 110–114. DOI: 10.1134/S0016793209010150.

10. Gossard E.E., Hooke W.H. Volny v atmosphere [Waves in the atmosphere]. Moscow, Mir Publ., 1978, 532 p. (In Russian). English edition: Gossard E.E., Hooke W.H. Waves in the atmosphere. New York, Elsevier Scientific Publishing Company, 1975, 456 p.

11. Krassovski V.I. Infrasonic variations of OH emission in the upper atmosphere. Annales de Géophysique. 1972, vol. 28, pp. 739–746.

12. Krasovsky V.I., Potapov B.P., Semenov A.I., Sobolev V.G., Shagayev M.M., Shefov N.N. Internal gravity waves near the mesopause. 1. Results of investigation of the hydroxyl emission. Polyarnye siyaniya i svechenie nochnogo neba [Aurora and Nigthglow]. Moscow, Sovetskoe Radio Publ., 1978, no. 26, pp. 5–29. (In Russian).

13. Laštovička J. A review of recent progress in trends in the upper atmosphere. J. Atmos. Solar-Terr. Phys. 2017, vol. 163, pp. 2–13. DOI: 10.1016/j.jastp.2017.03.009.

14. Lopez-Gonzalez M.J., Rodriguez E., Wiens R.H., Shepherd G.G., Sargoytchev S., Brown S., Shepherd M.G., Aushev V.M., López-Moreno J.J., Rodrigo R., Cho Y.-M. Seasonal variations of O2 atmospheric and OH (6-2) airglow and temperature at midlatitudes from SATI observations. J. Atmos. Solar-Terr. Phys. 2007, vol. 69, no. 17–18, pp. 2379–2390. DOI: 10.1016/j.jastp.2007.07.004.

15. Medvedeva I.V., Beletsky A.B., Perminov V.I. Semenov A.I., Shefov N.N. Atmosphere temperature variations in the mesopause and lower thermosphere during stratospheric warmings from data of ground-based and satellite measurements in different longitudinal sectors. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current Problems in Remote Sensing of the Earth from Space]. 2011, vol. 8, no. 4, pp. 127–135. (In Russian).

16. Nakamura T., Higashikawa A., Tsuda T., Matsushita Y. Seasonal variations of gravity wave structures in OH airglow with a CCD imager at Shigaraki. Earth, Planets, Space. 1999, vol. 51, pp. 897–906. DOI: 10.1186/BF03353248.

17. Perminov V.I., Semenov A.I., Medvedeva I.V. Pertsev N.N. Temperature variations in the mesopause region according to the hydroxyl-emission observations at midlatitudes. Geomagnetism and Aeronomy. 2014, vol. 54, no. 2, pp 230–239. DOI: 10.1134/S0016793214020157.

18. Pertsev N.N., Andreyev A.B., Merzlyakov E.G., Perminov V.I. Mesosphere-thermosphere manifestations of stratospheric warmings: joint use of satellite and ground-based measurements. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current Problems in Remote Sensing of the Earth from Space]. 2013, vol. 10, no. 1, pp. 93–100. (In Russian).

19. Shefov N.N. Hydroxyl emission of the upper atmosphere - I. Planet. Space Sci. 1969, vol. 17, pp. 797–813. DOI: 10.1016/0032-0633(69)90089-0.

20. Shefov N.N., Semenov A.I., Khomich V.Yu. Emission of the upper atmosphere as an indicator of its structure and dynamics. Moscow, GEOS Publ., 2006, 741 p. (In Russian).

21. Somsikov V.M., Andreyev A.B., Zhumabayev B.T. Peculiarities of seasonal behavior of wave disturbances in the mesosphere according to SATI and satellite observations. Izvestiya Natsional’noi akademii nauk Respubliki Kazakhstan [News of NAS RK. Physico-Mathematical Series]. 2015, vol. 4, no. 302, pp. 33–39. (In Russian).

22. Swenson G.R., Mende S.B. OH emission and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, UT. Geophys. Res. Lett. 1994, vol. 21, no. 20, pp. 2239–2242.

23. Taylor M.J., Hapgood M.A. On the origin of ripple-type wave structure in the OH nightglow emission. Planet. Space Sci. 1990, vol. 38, no. 11, pp. 1421–1430. DOI: 10.1016/0032-0633(90)90117-9.

24. Taylor M.J., Hapgood M.A., Rothwell P. Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near infrared OH nightglow emissions. Planet. Space Sci. 1987, vol. 35, no. 4, pp. 413–427. DOI: 10.1016/0032-0633(87)90098-5.

25. Vadas S.L., Taylor M.J., Pautet P.-D., Stamus P.A., Fritts D.C., Liu H.-L., S̃ao Sabbas F.T., Rampinelli V.T., Batista P., Takahashi H. Convection: the likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign. Ann. Geophys. 2009, vol. 27, pp. 231–259. DOI: 10.5194/angeo-27-231-2009.

26. Wiens R.H., Moise A., Brown S., Sargoytchev S., Peterson R.N., Shepherd G.G., Lopez-Gonzalez M.J. Lopez-Moreno J.J., Rodrigo R. SATI: A spectral airglow temperature imager. Adv. Space Res. 1997, vol. 19, pp. 677–680. DOI: 10.1016/S0273-1177(97)00162-2.

Login or Create
* Forgot password?