Apatity, Murmansk, Russian Federation
Apatity, Russian Federation
Apatity, Russian Federation
Apatity, Russian Federation
In the interaction of cosmic rays (CRs) with Earth’s atmosphere, neutrons are formed in a wide range of energies: from thermal (E≈0.025 eV) to ultrarelativistic (E>1 GeV). To detect and study CRs, Polar Geophysical Institute (PGI) uses a complex monitoring system containing detectors of various configurations. The standard neutron monitor (NM) 18-NM-64 is sensitive to neutrons with energies E>50 MeV. The lead-free section of the neutron monitor (BSRM) detects neutrons with energies E≈(0.1÷1) MeV. Also, for sharing with standard detectors, the Apatity NM station has developed and installed a neutron spectrometer with three energy channels and a particle reception angle of 15 degrees. The configuration of the device makes it possible to study the degree of anisotropy of the particle flux from different directions. We have obtained characteristics of the detector (response function and particle reception angle), as well as geometric dimensions through numerical simulation using the GEANT4 toolkit [Agostinelli et al., 2003]. During operation of the device, we collected database of observations and received preliminary results.
cosmic rays, nuclear physics, Monte Carlo method, particle detection
1. Agostinelli S., Allison J., Amako K., Apostolakis J., Araujo H., Arce P., Asai M., Axen D., Banerjee S., Barrand G., Behner F., Bellagamba L., Boudreau J., Broglia L., Brunengo A., Burkhardt H., Chauvie S., Chuma J., Chytracek R., Cooperman G., Cosmo G., Degtyarenko P., Dell’Acqua A., Depaola G., Dietrich D., Enami R., Feliciello A., Ferguson C., Fesefeldt H., Folger G., Foppiano F., Forti A., Garelli S., Giani S., Giannitrapani R., Gibin D., Gomez Cadenas J.J., Gonzalez I., Gracia Abril G., Greeniaus G., Greiner W., Grichine V., Grossheim A., Gumplinger P., Hamatsu R., Hashimoto K., Hasui H., Heikkinen A., Howard A., Ivanchenko V., Johnson A., Jones F.W., Kallenbach J., Kanaya N., Kawabata M., Ka-wabata Y., Kawaguti M., Kelner S., Kent P., Kodama T., Kokoulin R., Kossov M., Kurashige H., Lamanna E., Lampen T., Lara V., Lefebure V., Lei F., Liendl M., Lockman W., Longo F., Magni S., Maire M., Medernach E., Minamimoto K., Mora de Freitas P., Morita Y., Murakami K., Nagamatu M., Nartallo R., Nieminen P., Nishimura T., Ohtsubo K., Okamura M., O’Neale S., Oohata Y., Paech K., Perl J., Pfeiffer A., Pia M.G., Ranjard F., Rybin A., Sadilov S., Salvo E Di, Santin G., Sasaki T., Savvas N., Sawada Y., Scherer S., Sei S., Sirotenko V., Smith D., Starkov N., Stoecker H., Sulkimo J., Takahata M., Tanaka S., Tcherniaev E., Safai Tehrani E., Tropeano M., Truscott P., Uno H., Urban L., Urban P., Verderi M., Walkden A., Wander W., Weber H., Wellisch J.P., Wenaus T., Williams D.C., Wright D., Yamada T., Yoshida H., Zschiesche D. Geant 4 - a simulation toolkit. Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003, vol. 506, no. 3, p. 250. DOI:https://doi.org/10.1016/S0168-9002(03)01368-8.
2. Chadwick M.B., Herman M., Obložinský P., Dunn M.E., Danon Y., Kahler A.C., Smith D.L., Pritychenko B., Arbanas G., Arcilla R., Brewer R., Brown D.A., Capote R., Carlson A.D., Cho Y.S., Derrien H., Guber K., Hale G.M., Hoblit S., Hol-loway S., Johnson T.D., Kawano T., Kiedrowski B.C., Kim H., Kunieda S., Larson N.M., Leal L., Lestone J.P., Little R.C., McCutchan E.A., MacFar-lane R.E., MacInnes M., Mattoon C.M., McKnight R.D., Mughabghab S.F., Nobre G.P.A., Palmiotti G., Palumbo A., Pigni M.T., Pronyaev V.G., Sayer R.O., Sonzogni A.A., Summers N.C., Talou P., Thompson I.J., Trkov A., Vogt R.L., van der Marck S.C., Wallner A., White M.C., Wiarda D., Young P.G. ENDF/B-VII.1 Nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nuclear Data Sheets. 2011, vol. 112, iss. 12. pp. 2887-2996. DOI:https://doi.org/10.1016/j.nds. 2011.11.002.
3. Germanenko A.V., Balabin Yu.V., Gvozdevsky B.B., Shchur L.I. Nature of variations of gamma-radiation during precipitation. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2016, vol. 2, no. 1. pp. 56-63. (In Russian). DOI:https://doi.org/10.12737/19880.
4. Maurchev E.A., Balabin Yu.V. RUSCOSMIC - the new software toolbox for detailed analysis of cosmic ray interactions with matter. Solar-Terr. Phys. 2016, vol. 2, no. 4. pp. 3-10. DOI:https://doi.org/10.12737/24269.
5. Pioch C., Mares V., Vashenyuk E.V., Balabin Yu., Rühm W. Measurement of cosmic ray neutrons with Bonner sphere spectrometer and neutron monitor at 79° N // Nuclear Instruments and Methods in Physics Research. Section A. 2011, vol. 626, pp. 51-57. DOI:https://doi.org/10.1016/j.nima.2010.10.030.
6. Shirokov Yu.M., Yudin N.P. Yadernaya fizika [Nuclear Physics]. 2nd Edition. Moscow, Nauka Publ., 1980. 728 p. (In Russian).