Omsk, Omsk, Russian Federation
Omsk, Omsk, Russian Federation
Omsk, Omsk, Russian Federation
Omsk, Omsk, Russian Federation
Omsk, Omsk, Russian Federation
Methods of surfaces’ geometric simulation are widely used for construction of different solid figures. Colours at the XYZ color system are located at the same distance stated geometrically. It doesn't generate a complete visual presentation for the color gamut of reproduction system for multicolor image. The computer visualization of correspondent pictures at multicolor image’s reproduction accuracy estimation is one of priority tasks. In this paper have been presented results related to practical implementation of geometrical model and software for evaluation of printing system’s color reproduction, construction of color gamut bodies, and a projection representation of reproducible colors’ geometric models for different playback systems: additive and autotype synthesis of color. The color gamut construction is performed over CIE L*a*b* color space. The color is presented as the one lightness coordinate and two color-difference coordinates of chromaticity. A color gamut body volume calculation has been performed in automated mode using software tools. Calculation of the playback system’s color gamut is carried out with Qhull (Quickhull) algorithm realised in the Matlab software. The practical algorithm realisation has been considered on example of ink jet printing based on Epson 3880. The color gamut bodies’ surfaces projections construction was performing in light tones (lightness L = 80), middle tones (L = 50), and shadow tones (L = 20). Has been performed a section of the color gamut bodies’ constructed surfaces. Have been demonstrated the results of computer visualization for geometrical models interpreting the multicolor image’s reproduction accuracy relative to the original.
graphical model of reproducible colors, color gamut body, L*a*b* coordinate system.
Введение
Цветовой охват системы печати представляет собой замкнутую область, ограничивающую весь диапазон воспроизводимых системой цветов [4; 7]. Построение цветового охвата базируется на выборе шкалы оценки цветового охвата, на методах геометрического моделирования поверхностей [5; 6], используемых для конструирования пространственных фигур, моделирующих тела цветового охвата, на оценке количественных и качественных критериев
цветового охвата, на методах компьютерного представления полученной информации [3; 15; 16; 19; 20].
1. Varepo L. G., Golunov V.V., Trapeznikova O.V. Programma otsenki tsvetovosproizvedeniya pechatnoy sistemy [Program for assessing the color reproduction of the printed system]. Svidetel'stvo o registratsii elektronnogo resursa № 17108 ot 30.05.2011 [Certificate of registration of electronic resource No. 17108 dated 30.05.2011]. Moscow, OFERNIO INIM RAO Publ., 2011, I. 50201150701 ot 27.05.2011.
2. Varepo L.G., Trapeznikova O.V. Programmnyy produkt dlya otsenki tsvetovosproizvedeniya pechatnoy sistemy [Software product for assessing the color reproduction of the printed system of the system]. Svidetel'stvo o registratsii programmy dlya EVM № 2014619696 ot 19.09.2014 [Certificate of registration of computer program No. 2014619696 dated 19.09.2014]. Moscow, FIPS Publ., 2014.
3. Varepo L.G., Golunov A.V. Otsenka tsvetoperedachi ottiskov v protsesse vosproizvedeniya izobrazheniya na upakovochnykh kartonakh [Evaluation of the color reproduction of impressions in the process of image reproduction on packaging cartons]. Izvestiya vysshikh uchebnykh zavedeniy. Problemy poligrafii i izdatel'skogo dela [Izvestiya Vysshikh Uchebnykh Zavedenii. Problems of printing and publishing]. 2009, I. 5, pp. 3-9.
4. Domasev M.V. Tsvet, upravlenie tsvetom, tsvetovye raschety i izmereniya [Color, color management, color calculations and measurements]. St. Petersburg, Piter Publ., 2009.
5. Ivanov G.S., Brylkin Yu.V. Fraktal'naya geometricheskaya model' mikropoverkhnosti [Fractal geometric model of a microsurface]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 1, pp. 4-11. DOI:https://doi.org/10.12737/18053.
6. Korotkiy V.A., Khramova L.I., Usmanova E.A. Komp'yuternoe modelirovanie kinematicheskikh poverkhnostey [Computer simulation of kinematic surfaces]. Geometriya i grafika [Geometry and graphics]. 2015, V. 3, I. 4, pp. 19-26. DOI:https://doi.org/10.12737/17347.
7. Kuznetsov Yu.V. Vvedenie v problemy tsvetovoy kommunikatsii [Introduction to the problems of color communication]. St. Petersburg, FGBOU VPO «SPGUTD» Publ., 2011.
8. Pozharskiy A.O. Razrabotka metoda optimizatsii tsvetovykh kharakteristik kolorantov dlya tsvetnoy pechati. Kand. Diss. [Development of a method for optimizing the color characteristics of colorants for color printing. Cand. Diss]. Moscow, 2007. 240 p.
9. Rozenberg A. Ot Evropy k ISO. Chto oznachaet novaya tsvetovaya shkala dlya ofsetnoy pechati? [What does the new color scale mean for offset printing?]. Izvestiya vuzov. Problemy poligrafii i izd. dela [Proceedings of universities. Problems of polygraphy and ed. Business]. 2005, I. 4, p. 21-25.
10. Sinyak M., Lakonkin D. Vosproizvedenie tsveta v laboratornykh usloviyakh [Reproduction of color in laboratory conditions]. Komp`yuAr [CompuAr]. 2007, I. 3, p. 16-22.
11. Stefanov S. Tsvet, ego nazvaniya i shkaly kak etalony tsveta [Color, its names and scales as standards of color]. Vestnik tekhnologii v oblasti poligraficheskoy i pechatnoy reklamy [Bulletin of technology in the region. Polygraph. And printed advertising]. 2005, I. 3, p. 8-12.
12. Sin Kh.Ch. Sravnitel'naya otsenka metodov szhatiya tsvetovykh prostranstv v protsesse podgotovki izobrazheniy k poligraficheskomu vosproizvedeniyu [Comparative evaluation of methods of compression of color spaces in the process of preparation of images for polygraphic reproduction]. Vestnik MGUP [Vestnik MGUP]. 2006, I. 6, pp. 47-49.
13. Uvarova R.M., Churkin A.V. Zrenie i tsvetovospriyatie [Vision and color perception]. Vestnik tekhnologii v oblasti poligraficheskoy i pechatnoy reklamy [Bulletin of technology in the region. Polygraph. And printed advertising]. 2005, I. 1, pp. 4-7.
14. Frank E. Damit aus "Himbeerrot" nicht plotzlich "Erdbeerrot" wird [Farben], Dtsch. Drucker, 2009. Vol. 45. No. 19. S. 18-20. (in German).
15. Haoxue L. Ink feeding control based on measured ink density // IEEE Conference Publications. 2012. pp. 1376-1380.
16. Jiang M.A. Hue linear color space based on multi-grid optimization and standard color-difference formulas // IEEE Conference Publications, 2015. Pp. 5150-5154.
17. IEC 61966-2.1: Colour measurement and management in Multimedia systems and equipment. Part 2.1: Colour management in multimedia systems - Default RGB colour space - sRGB.
18. ISO 15076 1. Image technology colour management - Architecture, profile format and data structure (2005).
19. Kazuya Y. Color image enhancement in HSI color space without gamut problem // IEEE Conference Publications, 2014. Pp. 578-581.
20. Liu F. An efficient detection method for rare colored capsule based on RGB and HSV color space // IEEE Conference Publication, 2014. Pp. 175-178.
21. Method of Measuring and Specifying Color Rendering Properties of Light Source, CIE (Commission Internationale de l'Eclairage), 1995, 133.
22. Varepo, L.G., Golunov A.V., Golunova A.S., Trapeznikov O.V., Nagornova I.V. Method of calculation volume of the color gamut body // Testing and Measurement: Techniques and Applications: Proceedings of the 2015 International Conference on Testing and Measurement Techniques Testing (January 16-17, 2015). London: Taylor - Francis Group, 2015. pp. 69-71. DOI:https://doi.org/10.1201/b18470-18.
23. Wyszecki G., Stiles W. Color Science. Concepts and Methods, Quantitative Data and Formulas. Willey, New York, 2000. 950 p.