ON ONE PROPERTY OF A CIRCLE ON THE COORDINATE PLANE
Abstract and keywords
Abstract (English):
Descartes’ and Fermat's method allowed to define many geometrical forms, including circles, on the coordinate plane by means of the arithmetic equations and to make necessary analytical operations in order to solve many problems of theoretical and applied research in various scientific areas, for example. However, the equations of a circle and other conics in the majority of research topics are used in the subsequent analysis of applied problems, or for analytical confirmation of constructive solutions in geometrical research, according to Russian geometrician G. Monge and others, including. It is natural to consider a circle as a locus of points, equidistant from a given point — a center of the circle, with a constant distance R. There is another definition of a circle: a set of points from which a given segment is visible under constant directed angle. Besides, a circle is accepted to model the Euclid plane in the known scheme of non-Euclidean geometry of Cayley-Klein, it is the absolute which was given by A. Cayley for the first time in his memoirs. It is possible to list various applications of this geometrical form, especially for harmonism definition of the corresponding points, where the diametral opposite points of a circle are accepted as basic, and also for construction of involutive compliances. The construction of tangents to a circle can be considered as a classical example. Their constructive definition is simple, but also constructions on the basis of known projective geometry postulates are possible (a hexagon when modeling a series of the second order, Pascal's lines). These postulates can be applied to construction of tangents to a circle (to an ellipse and hyperboles to determination of imaginary points of intersection of a circle and a line. This paper considers the construction of tangents to a circle without the use of arches of auxiliary circles, which was applied in order to determine the imaginary points of intersection of a circle and a line (an axis of coordinates). Besides, various dependences of parameter p2, which is equal to the product of the values of the intersection points’ coordinates of a circle and coordinate axes, are analytically determined.

Keywords:
a circle on the coordinate plane; real and imaginary points; analytical and constructive solution; mathematical package Maple.
Text

Метод Декарта и Ферма позволил в координатной плоскости числено определять при помощи уравнений многие геометрические формы, в том числе и окружности, производить необходимые аналитические операции при решении поставленных задач для многих теоретических и прикладных исследований различных научных направлений, например [1; 2; 21; 27].

References

1. Arakelyan A.G. Beskonechnye posledovatelnosti vzaimno kasayushchihsya okruzhnostey [An Infinite Sequence of Mutually Related Circles]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 3, pp. 29-35. (in Russian). DOI:https://doi.org/10.12737/21531.

2. Boykov A.A. O krugovyh orbitah planet [On circular orbits of planets]. Geometriya i grafika [Geometry and Graphics]. 2013, V. 1, I. 2, pp. 66-68. (in Russian). DOI:https://doi.org/10.12737/795.

3. Bronshteyn I.N., Semendyaev K.A. Spravochnik po matematike dlya inzhenerov i uchashchihsya vtuzov [The reference book on mathematics for engineers and pupils of technical colleges]. Moscow, Nauka Publ., 1986. 544 p.

4. Hirsch A. Kriteriy mnimosti konik pri razlichnom ih zadanii [Criterion of ostensibility the skate at their various task]. Mezhvuzovskiy tematicheskiy sbornik nauchnych trudov "Nachertatelnaya geometriya i mashinnaya grafika v prakticheskom reshenii inzhenernyh zadach". [Descriptive geometry and machine graphics in the practical solution of engineering tasks: Interuniversity thematic collection of scientific works]. Omsk, 1986. pp. 51-54. (in Russian)

5. Hirsch A.G. Mnimosti v geometrii [Ostensibilities in geometry]. Geometriya i grafika [Geometry and Graphics]. 2014, V. 2, I. 1, pp. 3-8. (in Russian). DOI:https://doi.org/10.12737/5583.

6. Hirsch A.G. Tochki peresecheniya i obshchie kasatelnye dvuh okruzhnostey [Points of intersection and general tan-gents of two circles]. Nachertatelnaya geometriya i mashinnaya grafika v prakticheskom reshenii inzhenernyh zadach: Mezhvuzovskiy tematicheskiy sb. nauch. tr. [Descriptive geometry and machine graphics in the practical solution of engineering tasks: Interuniversity thematic collection of scientific works]. Omsk, 1987. pp. 53-57. (in Russian)

7. Hirsch A.G. Fokusy algebraicheskih krivyh [Foci of Algebraic Curves]. Geometriya i grafika [Geometry and Graphics]. 2015, V. 3, I. 3, pp. 4-17. (in Russian). DOI:https://doi.org/10.12737/14415.

8. Grafskiy O.A., Sayenko O.V. Kasatel'naya k okruzhnosti [Tangent to the circumference]. Nauchno-tekhnicheskie problemy transporta, promyshlennosti i obrazovaniya: Trudy Vserossiyskoy nauchno-prakticheskoy konferentsii [Scientific and technical problems of transport, industry and education: Proceedings of the All-Russian Scientific and Practical Conference]. Khabarovsk: DVGUPS Publ., 2010, V. 6, pp. 190-192.

9. Grafskij O.A., Nasonova N.A. K voprosu postroeniya kasatel'noy k giperbole [To a question of creation of a tangent to a hyperbole]. Trudy Vserossiyskoy molodezhnoy nauchnoprakticheskoy konferentsii s mezhdunarodnym uchastiem "Nauchnotehnicheskoe I ekonomicheskoe sotrudnichestvo stran ATR v XXI veke" [Proc. of the FESTU "Scientific and technical and economic cooperation of Asia-Pacific countries in the XXI century"]. Khabarovsk, 2010, I. 5, pp. 205- 209. (in Russian)

10. Grafskij O.A. Modelirovanie mnimykh elementov na ploskosti [Simulation imaginary elements in the plane]. Khabarovsk, FESTU Publ., 2004. 162 p.

11. Grafskij O.A., Ponomarchuk Yu.V. Nekotorye metodicheskie aspekty geometrograficheskoy podgotovki studentov [Some methodical aspects of geometrografichesky training of students ]. Problemy i perspektivy razvitiya obrazovaniya v tehnicheskih vuzah: Sb. mater. nauch.-metod. konf. [Problems and prospects of a development of education in technical colleges: Collection of materials of scientific and methodical conference]. Khabarovsk, FESTU Publ., 2016, pp. 200-204. (in Russian)

12. Grafskij O.A, Saenko O.V. Obosnovanie postroeniya kasatelnoy k okruzhnosti i ellipsu [Justification of creation of a tangent to a circle and an ellipse]. Nauchno-tehnicheskie problemy transporta, promyshlennosti i obrazovaniya: trudy Vserossiyskoy nauchno-praktich. konferentsii [Scientific and technical problems of transport, industry and education: works of the All-Russian scientific and practical conference]. Khabarovsk, FESTU Publ., 2011, pp. 14-18. (in Russian)

13. Grafskij O.A., Ponomarchuk Yu.V. Okruzhnost koordinatnoy ploskosti [Circle of the coordinate plane Natural and technical science]. Estestvennye i tehnicheskie nauki [Natural and technical science]. 2017, I. 1, pp. 131-136. (in Russian)

14. Grafskij O.A. Teoretiko-konstruktivnyeproblemymodelirovaniyamnimykh elementov v nachertatel'noygeometrii i ee prilozheniyakh. Dokt. Diss. [Teoretiko-construktive problems of modeling of imaginary elements in descriptive geometry and its applications. Doct. Diss]. Moscow, 2004. 406 p.

15. Ivanov G.S, Dmitrieva, I.M. O zadachah nachertatelnoy geometrii s mnimymi resheniyami [About the Tasks of Descriptive Geometry With Imaginary Solutions]. Geometriya i grafika [Geometry and Graphics]. 2015, V. 3, I. 2, pp. 3-8. (in Russian). DOI:https://doi.org/10.12737/12163.

16. Ivanov G.S. Perspektivy nachertatelnoy geometrii kak uchebnoy distsipliny [Descriptive geometry prospects as educational subject]. Geometriya i grafika [Geometry and Graphics]. 2013, V. 1, I. 1, pp. 26-27. (in Russian). DOI:https://doi.org/10.12737/467.

17. Ivanov G.S. Teoreticheskie i konstruktivno-prikladnye voprosy kvadratichnyh kremonovyh involyutsiy. Kand. Diss. [Theoretical and constructive and applied questions square kremonovykh of involyution. Cand. Diss.]. Moscow, 1968. 149 p.

18. Konakbaev K.K. O mnimyh tochkah peresecheniya pryamoy s konikoy [About imaginary points of intersection of a straight line from the koniky]. Trudy MAI «Kibernetikagrafiki i prikladnaya geometriya poverhnostey» [Proc. of the MAI “Cybernetics of graphics and applied geometry of surfaces”]. Moscow, 1970, V. 4, I. 205, pp. 33-42. (in Russian)

19. Korn G.A, Korn T.M. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Mathematical handbook for scientists and engineers]. Moscow, Nauka Publ., 1977. 832 p.

20. Keli A. Shestoy memuar o formah [The Sixth Memoir of Forms]. Ob osnovaniyah geometrii: Sbornik klassicheskih rabot po geometrii Lobachevskogo i razvitiyu eyo idey [About the geometry bases: Collection of classical works on Lobachevsky's geometry and development of her ideas]. Moscow, State publishing house of technical and theoretical literature Publ., 1956, pp. 222-252.

21. Miloserdov E.P., Volkov K.I. Traektorii planetarnyh sputnikov v tsilindricheskih proektsiyah [Trajectories of planetary satellites in cylindrical projections]. Geometriya i grafika [Geometry and Graphics]. 2013, V. 1, I. 1, pp. 15-16. DOI:https://doi.org/10.12737/462.

22. Monzh G. Nachertatel′naya geometriya [Descriptive geometry]. Moscow, ACADEMY OF SCIENCES OF THE USSR Publ., 1947. 291 p.

23. Protokol 79-go zasedanija. 31 marta 1898 g. [The Protocol of the 79th meeting. 31 Mar, 1898]. Izvestija Fiziko-matematicheskogo obshhestva Imperatorskogo Kazanskogo universiteta [News of Physical and mathematical society of Imperial Kazan university]. Kazan, Tipolitografiya of the Imperial university Publ., 1898, V. 8, I. 2, pp. 18-20. (in Russian)

24. Savelov A.A Ploskie krivye. Sistematika, svoystva, primeneniya: Spravochnoe rukovodstvo [Flat curves. Systematization, properties, applications: Reference guide]. Moscow, RHD Publ., 2002. 294 p. (in Russian)

25. Savel'ev Yu.A. Grafika mnimyh chisel [Graphics of imaginary numbers]. Geometriya i grafika [Geometry and Graphics]. 2013, V. 1, I. 1, pp. 22-23. (in Russian). DOI:https://doi.org/10.12737/2079.

26. Sal'kov N.A. Nachertatelnaya geometriya - baza dlya geometrii analiticheskoy [Descriptive Geometry As the Basis for Analytical Geometry]. Geometriya i grafika [Geometry 24 and Graphics]. 2016, V. 4, I. 1, pp. 44-54. (in Russian). DOI:https://doi.org/10.12737/18057.

27. Sal'kov N.A. Ellips: kasatelnaya i normal [Ellipse: tangent and normal]. Geometriya i grafika [Geometry and Graphics]. 2013, V. 1, I. 1, pp. 35-37. (in Russian). DOI:https://doi.org/10.12737/470.

28. Seregin V.I., Ivanov G.S., Dmitrieva I.M., Muravev K.A. Mezhdistsiplinarnye svyazi nachertatelnoy geometrii i smezhnyh razdelov vysshey matematiki [Interdisciplinary connections of descriptive geometry and related sections of higher mathematics]. Geometriya i grafika [Geometry and Graphics]. 2013, V. 1, I. 3/4, pp. 8-12. (in Russian). DOI:https://doi.org/10.12737/2124.

29. Chekmarev A.A., Osipov V.K. Spravochnik po mashinostroitelnomu chercheniyu [Reference book on machine-building drawing]. Moscow, Vyssh. shk. Publ., 1994. 671 p.

30. Chetveruhin N.F. Proektivnaja geometriya [Projective geometry]. Moscow, Prosveshhenie Publ, 1969. 368 p.

31. Yaglom I.M. Printsip otnositelnosti Galileya i neevklidova geometriya [Printsip of relativity Galilee and non-Euclidean geometry of]. Moscow, Nauka Publ., 1969. 303 p.

Login or Create
* Forgot password?