ESTIMATING THE ABSOLUTE TOTAL ELECTRON CONTENT BASED ON SINGLE-FREQUENCY SATELLITE RADIO NAVIGATION GPS/GLONASS DATA
Abstract and keywords
Abstract (English):
We present a new technique for estimating the absolute vertical and slant total electron content (TEC). The estimation is based on single-frequency joint phase and pseudorange GPS/GLONASS measurements at single stations. Estimated single-frequency vertical TEC agrees qualitatively and quantitatively with the dual-frequency vertical TEC. For analyzed stations a typical value of the difference between the single-frequency vertical TEC and dual-frequency ones generally does not exceed ~1.5 TECU with RMS up to ~3 TECU.

Keywords:
ionosphere, GPS, GLONASS, total electron content, single-frequency data
Text
Publication text (PDF): Read Download
References

1. Afraimovich E.L., Perevalova N.P. GPS-monitoring verkhnei atmosfery Zemli [GPS-monitoring of the Earth's upper atmosphere]. Irkutsk, 2006, 480 p. (In Russian).

2. Afraimovich E.L., Yasukevich Yu.V. Using GPS–GLO-NASS–GALILEO data and IRI modeling for ionospheric calibration of radio telescopes and radio interferometers. J. Atmos. Solar-Terr. Phys. 2008, vol. 70, no. 15, pp. 1949–1962.

3. Afraimovich E.L., Astafyeva E.I., Oinats A.V., Yasukevich Y.V., Zhivetiev I.V. Global electron content: A new conception to track solar activity. Ann. Geophys. 2008, vol. 26, no. 2, pp. 335–344. DOI: 10.5194/angeo-26-335-2008.

4. Astafyeva E., Zakharenkova I., Foerster M. Ionospheric response to the 2015 St. Patrick's Day storm: a global multi-instrumental overview. J. Geophys. Res. Space Phys. 2015, vol. 120, no. 10, pp. 9023–9037. DOI: 10.1002/2015JA021629.

5. Blewitt G. An automatic editing algorithm for GPS data. Geophys. Res. Lett. 1990. vol. 17, pp. 483–492.

6. Cherniak I., Zakharenkova I., Krankowski A. Approaches for modeling ionosphere irregularities based on the TEC rate index. Earth, Planets and Space. 2014, vol. 66, p. 165. DOI: 10.1186/s40623-014-0165-z.

7. Dow J.M., Neilan R.E., Rizos C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geodesy. 2009, vol. 83, pp. 191–198. DOI: 10.1007/ s0019000803003.

8. Durmaz M., Karslioglu M.O. Regional vertical total electron content (VTEC) modeling together with satellite and receiver differential code biases (DCBs) using semi-parametric multivariate adaptive regression B-splines (SP-BMARS). J. Geodesy. 2015, vol. 89, iss. 4, pp. 347–360. DOI 10.1007/s00190-014-0779-8.

9. Forte B., Aquino M. On the estimate and assessment of the ionospheric effects affecting low frequency radio astronomy measurements. 30th URSI General Assembly and Scientific Symp. 2011, pp. 1–4.

10. Gulyaeva T.L. Modification of the solar activity indices in the International Reference Ionosphere IRI and IRI-Plas models due to recent revision of sunspot number time. Solnechno-Zemnaua Fizika [Solar-Terrestrial Phys.]. 2016, vol. 2, no. 3, pp. 59–68. DOI: 10.12737 / 20872. (In Russian).

11. Gulyaeva T.L., Veselovsky I.S. Two-phase storm profile of global electron content in the ionosphere and plasmasphere of the Earth. J. Geophys. Res. 2012, vol. 117, A09324. DOI: 10.1029/2012JA018017.

12. Hernández-Pajares M., Juan J.M., Sanz J., Orus R., Garcia-Rigo A., Feltens J., Komjathy A., Schaer S.C., Krankowski A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geophys. 2009, vol. 83: Special IGS Issue, pp. 263–275. DOI: 10.1007/s00190-008-0266-1.

13. Hocke K. Oscillations of global mean TEC. J. Geophys. Res. 2008, vol. 113, A04302. DOI: 10.1029/2007JA012798.

14. Ivanov V.B., Gefan G.D., Gorbachev O.A. Global empirical modelling of the total electron content of the ionosphere for satellite radio navigation systems. J. Atmos. Solar-Terr. Phys. 2011, vol. 73, pp. 1703–1707.

15. Kunitsyn V.E., Tereshchenko E.D., Andreeva E.S. Radiotomografiya ionosfery [Radio Tomography of the Ionosphere]. Moscow, Fizmatlit publ., 2007, 255 p. (In Russian).

16. Lanyi G.E., Roth T. A comparison of mapped and measured total ionospheric electron content using Global Positioning System and Beacon satellite observations. Radio Sci. 1988, vol. 23, no. 4, pp. 483–492. DOI: 10.1029/rs023i004p00483.

17. Lean J.L., Emmert J.T., Picone J.M., Meier R.R. Global and regional trends in ionospheric total electron content. J. Geophys. Res. 2011, vol. 116, A00H04. DOI: 10.1029/2010JA016378.

18. Liu L., Wan W., Ning B., Zhang M.-L. Climatology of the mean total electron content derived from GPS global ionospheric maps. J. Geophys. Res. 2009, vol. 114, A06308. DOI: 10.1029/2009JA014244.

19. Mannucci A.J., Wilson B.D., Yuan D.N., Ho C.H., Lindqwister U.J., Runge T.F. A global mapping technique for GPS-derived ionospheric TEC measurements. Radio Sci. 1998. vol. 33, iss. 3, pp. 565–582. DOI: 10.1029/97RS02707.

20. Mayer C., Jakowski N., Beckheinrich J., Engler E. Mitigation of the ionospheric range error in single-frequency GNSS applications. Proc. 21st Intern. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008) . Savannah, GA. 2008, pp. 2370–2376.

21. Mylnikova A.A., Yasyukevich Y.V., Demyanov V.V. Estimating the vertical total electron content absolute value of the ionosphere from the GPS/GLONASS. Solnechno-Zemnaua Fizika [Solar-Terrestrial Phys.]. 2014, iss. 24, pp. 70–77. (In Russian).

22. Ovodenko V.B., Trekin V.V., Korenkova N.A., Klimenko M.V. Investigating range error compensation in UHF radar through IRI-2007 real-time updating: Preliminary results. Adv. Space Res. 2015. DOI: 10.1016/j.asr.2015.05.017.

23. Schaer S., Beutler G., Rothacher M. Mapping and predicting the ionosphere. Proc. IGS AC Workshop. Darmstadt, Germany, 1998a, pp. 307–320.

24. Schaer S., Gurtner W., Feltens J. IONEX: The ionosphere map exchange format. Version 1. Proc. IGS AC Workshop. Darmstadt, Germany, 1998b, pp. 233–247.

25. Schuler T., Oladipo O.A. Single-frequency GNSS ionospheric delay estimation — VTEC monitoring with GPS, GALILEO and COMPASS: 1st edition. Lulu Press, 2012. ISBN 978-1-4716-4225-8.

26. Schuler T., Oladipo O.A. Single-frequency single-site VTEC retrieval using the NeQuick2 ray tracer for obliquity factor determination. GPS Solution. 2014, vol. 18, pp. 115–122. DOI: 10.1007/s10291-013-0315-y.

27. Themens D.R., Jayachandran P.T. Solar activity variability in the IRI at high latitudes: Comparisons with GPS total electron content. J. Geophys. Res. Space Phys. 2016, vol. 121, pp. 3793–3807. DOI:10.1002/2016JA022664.

28. Themens D.R., Jayachandran P.T., Langley R.B. The nature of GPS differential receiver bias variability: An examination in the polar cap region. J. Geophys. Res. Space Phys. 2015, vol. 120, pp. 8155–8175. DOI: 10.1002/2015JA021639.

29. Yasyukevich Yu.V., Mylnikova A.A., Kunitsyn V.E., Padokhin A.M. Influence of GPS/GLONASS differential code biases on the determination accuracy of the absolute total electron content in the ionosphere. Geomagnetism and Aeronomy. 2015, vol. 55, no. 6. pp. 763–769 DOI: 10.1134/S00167932 1506016X.

30. URL: ftp://cddis.gsfc. nasa.gov/gps/products/ionex (accessed December 12, 2016).

Login or Create
* Forgot password?