Rubrics: REVIEWS
Abstract and keywords
Abstract (English):
Regular observations of active processes in the solar atmosphere have been started using the first stage of the multiwave Siberian Radioheliograph (SRH), a T-shaped 48-antenna array with a 4–8 GHz operating frequency range and a 10 MHz instantaneous receiving band. Antennas are mounted on the central antenna posts of the Siberian Solar Radio Telescope. The maximum baseline is 107.4 m, and the angular resolution is up to 70". We present examples of observations of the solar disk at different frequencies, “negative” bursts, and solar flares. The sensitivity to compact sources reaches 0.01 solar flux units (≈10^{-4} of the total solar flux) with an accumulation time of about 0.3 s. The high sensitivity of SRH enables monitoring of solar activity and allows studying active processes from characteristics of their microwave emission, including faint events, which could not be detected previously.

Sun, radio emission, solar flares, radio telescopes, negative bursts
Publication text (PDF): Read Download

1. Alissandrakis C.E., Kochanov A.A., Patsourakos S., Altyntsev A.T., Lesovoi S.V., Lesovoya N.N. Microwave and EUV Observations of an Erupting Filament and Associated Flare and Coronal Mass Ejections. Publications of the Astronomical Society of Japan. 2013, vol. 65, no. SP1, article id. S8, 10 p.

2. Altyntsev A.T., Kashapova L.K. Vvedenie v radioastronomiyu Solntsa [Introduction to Solar Radio Astronomy]. Irkutsk, IGU Publ., 2014. 203 p. (In Russian).

3. Altyntsev A., Meshalkina N., Meszarosova, H., Karlicky M., Palshin V., Lesovoi S. Sources of quasi-periodic pulses in the flare of 18 August 2012. Solar Phys. 2016, vol. 291, iss. 2, pp. 445–463.

4. Bastian T.S., Gary D.E., White S.M., Hurford G.J. Toward a frequency-agile solar radiotelescope. 18 NSO/Sacramento Peak Summer Workshop “Synoptic Solar Physics”. Sunspot, New Mexico 8–12 September 1997, p. 563 (ASP Conference Series. 1998, vol. 140).

5. Bogod V.M., 2011, RATAN-600 radio telescope in the 24th solar-activity cycle. I. New opportunities and tasks. Astrophys. Bull. 2011, vol. 66, iss. 2, pp. 190–204.

6. Borovik V.N. Quiet Sun from multifrequency radio observations on RATAN-600. Lecture Notes in Phys. 1994, vol. 432, pp. 185–190.

7. Fleishman G.D., Pal’shin V.D., Meshalkina N.S., Lysenko L., Kashapova L.K., Altyntsev A.T. A cold flare with delayed heating. Astrophys. J. 2016, vol. 822, iss. 2, article id. 71, 20 p.

8. Gary D.E., Nita G.M., Sane N. Expanded Owens Valley Solar Array (EOVSA) testbed and prototype. American Astronomical Society, AAS Meeting 220, id. 204.30 2012.

9. Grechnev V.V. A method to analyze imaging radio data on solar flares. Solar Phys. 2003, vol. 213, iss. 1, pp. 103–110.

10. Grechnev V.V., Lesovoi S.V., Smolkov G.Ya., Krissinel B.B., Zandanov V.G., Altyntsev A.T., Kardapolova N.N., Sergeev R.Y., Uralov A.M., Maksimov V.P., Lubyshev B.I. The Siberian Solar Radio Telescope: The current state of the instrument, observations, and data. Solar Phys. 2003, vol. 216, iss. 1, pp. 239–272.

11. Grechnev V.V., Kuz’menko I.V., Uralov A.M., Chertok M., Kochanov A.A. Microwave negative bursts as indications of reconnection between eruptive filaments and a large-scale coronal magnetic environment. Publications of the Astronomical Society of Japan. 2013, vol. 65, no. SP1, article id. S10, 9 p.

12. Grechnev V.V., Uralov A.M., Kuzmenko I.V., Kochanov A.A., Chertok I.M., Kalashnikov S.S. Responsibility of a filament eruption for the initiation of a flare, CME, and blast wave, and its possible transformation into a bow shock. Solar Phys. 2015, vol. 290, iss. 1, pp. 129–158.

13. Grechnev V.V., Uralov A.M., Kochanov A.A., Kuzmenko I.V., Prosovetsky D.V., Egorov Y.I., Fainshtein V.G., Kashapova L.K. A tiny eruptive filament as a flux-rope progenitor and driver of a large-scale CME and wave. Solar Phys. 2016, vol. 291, iss. 4, pp. 1173–1208.

14. Grechnev V.V., Uralov A.M., Kiselev V.I., Kochanov A.A. The 26 December 2001 solar eruptive event responsible for GLE63. II. Multi-loop structure of microwave sources in a major long-duration flare. Solar Phys. 2017, vol. 292, iss. 1, article id. 3, 27 p.

15. Kaltman T.I., Kochanov A.A., Myshyakov I.I., Maksimov V.P., Prosovetsky D.V., Tokhchukova S.K. Ob-servations and modeling of the spatial distribution and microwave radiation spectrum of the active region NOAA 11734. Geomagnetism and Aeronomy. 2015, vol. 55, iss. 8, pp. 1124–1130.

16. Kochanov A.A., Anfinogentov S.A., Prosovetsky D.V., Rudenko G.V., Grechnev V.V. Imaging of the solar at-mosphere by the Siberian Solar Radio Telescope at 5.7 GHz with an enhanced dynamic range. Publications of the Astronomical Society of Japan. 2013, vol. 65, no. SP1, article id. S19, 12, p.

17. Lang K.R., Willson R.F., Kile J.N., Lemen J., Strong K.T., Bogod V.M., Gelfreikh G.B., Ryabov B.I., Hafizov S.R., Abramov V.E., Tsvetkov S.V. Magnetospheres of solar active regions inferred from spectral-polarization observations with high spatial resolution. Astrophys. J. 1993, vol. 419, pp. 398–417.

18. Lemen J.R., Title A.M., Akin D.J., et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Ob-servatory (SDO). Solar Phys. 2012, vol. 275, iss. 1, pp. 17–40.

19. Lesovoi S.V., Altyntsev A.T., Ivanov E.F., Gubin A.V. A 96-antenna radioheliograph. Res. Astron. Astrophys. 2014, vol. 14, no. 7, pp. 864–868.

20. Lesovoi S.V., Kobets V.S. Correlation curves of the Siberian Radioheliograph. Solnechno-zemnaya fizika [Solar-Terrestrial Phys.]. 2017, vol. 3, no. 1, pp. 17–21. (In Russian).

21. Meegan C., Lichti G., Bhat P.N., Bissaldi E., Briggs M.S., Connaughton V., Diehl R., Fishman G., Greiner J., Hoover A.S., van der Horst A.J., von Kienlin A., Kippen R.M., Kouveliotou C., McBreen S., Paciesas W.S., Preece R., Steinle H., Wallace M.S., Wilson R.B., Wilson-Hodgeet C. The Fermi Gamma-ray Burst Monitor. Astrophys. J. 2009, vol. 702, no. 1, pp. 791–804.

22. Nakajima H., Nishio M., Enome S., Shibasaki K., Takano T., Hanaoka Y., Torii C., Sekiguchi H., Bushimata T., Kawashima S., Shinohara N., Irimajiri Y., Koshiishi H., Kosugi T., Shiomi Y., Sawa M., Kai K. New Nobeyama Radio Heliograph. J. Astrophys. Astron. Suppl. 1995, vol. 16, pp. 437–442.

23. Nita G.M., Fleishman G.D., Jing, Ju, Lesovoi S.V., Bogod V.M., Yasnov L.V., Wang H., Gary D.E. Three-dimensional structure of microwave sources from solar rotation stereoscopy versus magnetic extrapolations. Astro-phys. J. 2011, vol. 737, iss. 2, article id. 82, 12 p.

24. Nita G.M., Gary D.E., Lee J. Statistical study of two years of solar flare radio spectra obtained with the Owens Valley Solar Array. Astrophys. J. 2004, vol. 605, iss. 1, pp. 528–545.

25. Smolkov G.Ya., Pistolkors A.A., Treskov T.A., Krissinel B.B., Putilov V.A. The Siberian Solar Radio-Telescope — Parameters and principle of operation, objectives and results of first observations of spatio-temporal properties of development of active regions and flares. Astrophys. Space Sci. 1986, vol. 119, no. 1, pp. 1–4.

26. Uralov A.M., Lesovoi S.V., Zandanov V.G., Grechnev V.V. Dual-filament initiation of a coronal mass ejection: Observations and model. Solar Phys. 2002. vol. 208, iss. 1, pp. 69–90.

27. Wang Z., Gary D.E., Fleishman G.D., White S.M. Coronal magnetography of a simulated solar active region from microwave imaging spectropolarimetry. Astrophys. J. 2015, vol. 805, iss. 2, article id. 93, 13 p.

28. Yan Y., Zhang J., Wang W., Liu F., Chen Z., Ji G. The Chinese Spectral Radioheliograph — CSRH. Earth, Moon, and Planets. 2009, vol. 104, iss. 1–4, pp. 97–100.

29. Zhdanov D.A., Zandanov V.G. Observations of microwave fine structures by the Badary broadband microwave spectropolarimeter and the Siberian Solar Radio Telescope. Solar Phys. 2015, vol. 290, pp. 287–294.

30. Zirin H., Baumert B.M., Hurford G.J. The microwave brightness temperature spectrum of the quiet Sun. Astrophys. J. Part 1 (ISSN 0004-637X). 1991, vol. 370, pp. 779–783.

31. http://badary.iszf. (accessed December 10, 2016)

32. (accessed December 10, 2016).

33. (accessed December 10, 2016).

34. (accessed December 10, 2016).

Login or Create
* Forgot password?