Rostov-na-Donu, Russian Federation
A kinematic approach to the construction of surfaces with equiaffine invariant for a volume of a compartment bounded by a surface, and a square of cross sections, parallel to a parallelism plane on the basis of the plane’s equiaffine transformations has been proposed in this paper. In particular, in the paper have been considered parametric equations of canal surfaces with a parallelism plane xOy, which sections have been transformed by elliptic, parabolic and hyperbolic rotations. A curve-prototype lies in the section z = 0, and a curve-image lies in the section z = h after transformation with rotations set parameters. The parametric equations have been obtained in a general form with randomness of the choice both a curve-prototype for canal surface construction, and functions defining a rate of rotation parameters change. Some general properties of the obtained surfaces have been considered, as well as some special cases of surfaces are considered, and trajectories of generating lines have been defined for them. In the case of parameter’s linear variation along the z-axis the elliptical rotation’s surfaces represent spiral and straight helical surfaces with constant and variable step however the generatrix trajectory envelops elliptical cone and cylinder. In all cases, the generatrices of the elliptical rotation’s surfaces are space curves. In the case of all parameters’ linear variation the parabolic rotation’s surfaces represent ruled surfaces. One particular case of parabolic rotation’s surfaces is the surface with two parallelism planes: xOy for equiaffine changing curve-section and xOz for generatrix. In the cases related to non-linear variation of only one parameter, generatrices for surfaces of parabolic and hyperbolic rotations are plane curves. Considered surfaces require further investigation with a view to their possible use in mechanisms and structures.
canal surface, equiaffine transformations, equal figures, elliptical rotation, parabolic rotation, hyperbolic rotation, affine similar curves, parametric equations, parallelism plane.
Новые технологии, новые материалы, новые подходы к конструированию в настоящее время позволяют осуществлять такие замыслы инженеров, которые раньше были невозможны. В связи с этим становятся актуальными вопросы компьютерного моделирования изделий (деталей, строительных конструкций), первым этапом которого является построение геометрической модели. При этом аналитические модели используемых в проекте поверхностей дают дополнительное преимущество при построениях и прочностных расчетах.
1. Bezdіtnij A.O., Vereshhaga V.M., Najdish A.V., Konopac'kij E.V. Modeljuvannja kanalovoї poverhnі z krivolіnіjnoju naprjamnoju [Curvilinear sending channel surfaces design]. Pracі Tavrіjs'kogo derzhavnogo agrotehnologіchnogo unіversitetu [Proc. Of Tavria State Agrotechnological University], 2012, v. 54, i. 4, pp. 9-14. (in Ukrainian).
2. Beljaeva Z.V. Geometricheskoe modelirovanie prostranstvennyh konstrukcij. Avtoref. Dokt. Diss. [Geometric modeling of space structure. Doct. of Ph., Abst.], Perm', 2015. 16 p. (in Russian).
3. Grjaznov Ya.A. Matematicheskaja model' otseka kanalovoj poverhnosti, zadannoj diskretnym karkasom obrazujushhih [Mathematical model of channel surface compartment with discrete carcass of forming]. Vestnik Moskovskogo gosudarstvennogo universiteta lesa - Lesnoj vestnik [Moscow state forest university bulletin - Lesnoy vestnik], 2013, v. 3, pp. 193-195. (in Russian).
4. Grjaznov Ya.A. Otsek kanalovoj poverhnosti kak obraz cilindra v rasslojaemom obrazovanii [Channel surface compartment as image of the cylinder in stratifiable formation]. Geometrija i grafika [Geometry and graphics], 2012, v. 1, i. 1, pp. 17-19. (in Russian). DOI:https://doi.org/10.12737/2077.
5. Gudaev O.A. Kombinatorika jekviaffinnyh slov dlja proektirovanija leksikograficheskih kodov rasshirennoj real'nosti [Combinatorics on Equaffine Words for Design Lexicographic Codes of Augmented Reality]. Iskusstvennyj intellekt [Artificial intelligence], 2014, v. 2, pp. 51-74. (in Russian).
6. Dolgarev A.I. Klassicheskie metody v differencial'noj geometrii oduljarnyh prostranstv [Classic methods in differential geometry of odulie’s spaces], Penza, PGU Publ., 2005, 310 p. (in Russian).
7. Dolgarev A.I. Oduli Li preobrazovanij. Traektorii i poverhnosti traektorij. Sobstvennaja geometrija poverhnosti [Lie’s oduls of transformations. Trajectories and surfaces of trajectories. Own geometry of surface]. Izvestija vysshih uchebnyh zavedenij. Povolzhskij region. Fiziko-matematicheskie nauki. Matematika. [University proceedings. Volga region. Physical and mathematical sciences (mathematics)]. 2008, v. 2, pp. 21-38. (in Russian).
8. Efimov I.N., Morozov E.A., Zhukova S.A., Magafurov V.V. Ustojchivye algoritmy na osnove jekviaffinnyh preobrazovanij [Stable Algorithms Based on Equiaffine Transformations]. Vestnik IzhGTU [Bulletin of Kalashnikov ISTU]. Izhevsk, IzhGTU Publ., 2013, v. 3, pp. 165-167. (in Russian).
9. Ivanov G.S. Konstruirovanie tehnicheskih poverhnostej (matematicheskoe modelirovanie na osnove nelinejnyh preobrazovanij) [Technic surface’s construction (mathematic modeling on based nonlinear transformations)]. Moscow, Mashinostroenie Publ., 1987, 192 p. (in Russian).
10. Kokareva Ya.A. Analіtichnі ta komp'juternі modelі poverhon' kongruencіj pershogo porjadku prjamih. Kand. Diss. [Analytic and computer aided modeling of surfaces of first order linear congruences. Cand. Diss.], Makіivka, 2011, 203 p. (in Ukrainian).
11. Kokareva Ya.A. Naumenko D.S. Konstruirovanie poverhnosti s peremennym secheniem [Construction of variable section surface]. Vіsnyk Donbas'koi akademіi budіvnytstva і arhіtekturi [Proceeding of the Donbas National Academy of Civil Engineering and Architecture]. 2012, v. 3, pp. 74-77. (in Russian).
12. Kokareva Ya.A. Linejchataja poverhnost' jekviaffinnyh sechenij [Liner surface of Equi-affine section]. Inzhenernyj vestnik Dona [Engineering journal of Don], 2015, v. 4. URL: ivdon.ru/ru/magazine/archive/n4y2015/3355. (in Russian).
13. Kokareva Ya.A. Parabolіchna kongruencіja prjamyh ta ii poverhnі v parametrah parabolіchnogo zvorotu [Linear parabolic congruence and its surfaces in parameters of parabolic rotation]. Kompjuterno-іntegrovanі tehnologіi: osvіta, nauka, vyrobnytstvo [Computer- integrated technologies: education, science and industry]. Lutsk, LNTU Publ., 2011, v. 6, pp. 119-123. (in Ukrainian).
14. Kokareva Ya.A. Ekviaffinnye svojstva linejchatyh poverhnostej kongrujencij parabolicheskogo povorota [Equi-affine properties of linear surfaces of parabolic rotation’s congruence]. «Stroitel'stvo i arhitektura - 2015»: Sovremennye informacionno- ekonomicheskie tehnologii: tendencii i perspektivy razvitija: materialy Mezhdunarodnoj nauchno-prakticheskoj konferencii [Proc. Int. Symp. “Civil Engineering and Architecture - 2015”], Rostov on Don, RSUCE Publ., 2015, pp. 79-80. (in Russian).
15. Khmarova L., Korotkiy V., Usmanova E. Komp'juternoe modelirovanie kinematicheskih poverhnostej [Computer Simulation of Kinematic Surfaces]. Geometrija i grafika [Geometry and graphics]. 2016, v. 3, i. 4, pp. 19-26. (in Russian). DOI:https://doi.org/10.12737/17347.
16. Krivoshapko S.N., Ivanov V.N. Enciklopedija analiticheskih poverhnostej [Encyclopedia of analytical surfaces]. Moscow, Librokom Publ., 2010. 560 p. (in Russian).
17. Mihajlenko V.E., Obuhova V.S., Podgornyj A.L. Formoobrazovanie obolochek v arhitekture [Forming of cover in architecture]. Kiev, Budіvel'nik Publ., 1972. 208 p. (in Russian).
18. Nekrasova O.I. Geometricheskoe modelirovanie i avtomatizacija proektirovanija grupp kanalovyh poverhnostej. Kand. Diss. [Geometric modeling and automation of projection of channel surface’s group. Cand. Diss.]. Moscow, 1984. 171 p. (in Russian).
19. Nicyn A.Yu. Konstruirovanie tochechnogo karkasa poverhnosti obshhego vida po zadannym granichnym uslovijam [Construction of a dot skeleton of a general type surface in the given boundary conditions]. Vestnik Nacional'nogo tehnicheskogo universiteta Har'kovskij politehnicheskij institut. Serija: Informatika i modelirovanie [Proceeding of the National Technical University “Kharkiv polytechnic institute”. Informatics and Modeling]. 2007, v. 39, pp. 132-140. (in Russian).
20. Rozenfel'd B.A. Apollonij Pergskij [Apollonius of Perga]. Moscow, MCNMO Publ., 2004, 176 p. (in Russian).
21. Sal'kov A.V. Soprjazhenie poverhnostej vtorogo porjadka kanalovoj poverhnost'ju postojannogo ili peremennogo radiusa. Kand. Diss. [Interfacing surfaces of the second order of a canal surface of constant or variable radius. Cand. Diss.]. Riga, 1969. 194 p. (in Russian).
22. Sal′kov N. Parametricheskaja geometrija v geometricheskom modelirovani [Parametric Geometry in Geometric Modeling]. Geometrija i grafika [Geometry and graphics]. 2014, v. 2, i. 3, pp. 7-13. DOI:https://doi.org/10.12737/6519. (in Russian).
23. Sidjakin S.V., Vizil'ter Yu.V. Morfologicheskie deskriptory formy binarnyh izobrazhenij na osnove jellipticheskih strukturirujushhih jelementov [Morphological shape descriptors of binary images based on elliptical structuring elements]. Komp'juternaja optika [Computer optic]. 2014, v. 3, i. 38, pp. 511-520. (in Russian).
24. Cvicinskij I.V. Grafo-analiticheskoe postroenie kollineacij [Grafic-analytical construction of collineations]. Kishinev, Akademija nauk Moldavskoj SSR Publ., 1968. 80 p. (in Russian).
25. Cvicinskij I.V. Konstruktivnoe issledovanie odnoparametricheskih grupp preobrazovanij [Structural study of one-parameter groups of transformations]. Kishinev, «Shtiinca» Publ., 1977. 82 p. (in Russian).
26. Shirokov P.A., Shirokov A.P. Affinnaja differencial'naja gometrija [Affine Differential Geometry]. Moscow, Fizmatlit Publ., 1959, 319 p. (in Russian).
27. Yaglom I.M., Ashkinuze V.G. Idei i metody affinnoj i proektivnoj geometrii. Chast' 1. Affinnaja geometrija [Ideas and methods of affine and projective geometry. Part 1. Affine geometry]. Moscow, Uchpedgiz Publ., 1962. 248 p. (in Russian).
28. Nomizu K., Sasaki T. Affne Differential Geometry. Cambridge University Press, 1994. 268 p.
29. Raviv D., Bronstein A.M., Bronstein M.M., Kimmel R., Sochen N. Affine-invariant diffusion geometry of deformable 3D shapes. Computer Vision and Pattern Recognition (CVPR), 2011. URL: cs.technion.ac.il/~ron/PAPERS/ Conference/RavBroBroKimSocSMI2011.pdf/
30. Raviv D., Bronstein A. M., Bronstein M. M., Waisman D., Sochen N., Kimmel R. Equi-affine Invariant Geometry for Shape Analysis. Math Imaging Vision, 2013. URL: cs.technion.ac.il/~ron/PAPERS/Journal/RavBroBroWai- SocKimJMIV2013.pdf/