GRAPHIC-ANALYTICAL RESEARCHES OF INVOLUTION
Abstract and keywords
Abstract (English):
Known projective transformations, namely their private types such as harmonism and involution are considered. It is known that projective transformations are collinear, at their performance the order, the cross ratio of fours of elements (on a straight line — the cross ratio of four points, in a bunch of straight lines — the cross ratio of this bunch’s four straight lines, this property (invariant) is similarly preserved for a bunch of planes, i.e. in considering of first step forms) is preserved. At a constructive approach to such transformations there are some ways for definition of position for corresponding elements which students use when studying discipline "Affine and projective geometry" on preparation profiles 09.03.01 — “CAD Systems" and 09.03.03 — “Applied Informatics in Design”. The received constructions are checked by analytical calculations, proceeding from known dependences for harmonism and involutions. In such a case results both for a range of points, and for a bunch of straight lines which pass through these points are analytically compared. The provided computational and graphic work contains three sections: prospects, harmonism and involution, and is carried out by students on individual options with application of the graphic editor Microsoft Visio or the graphic package CO MPAS voluntary. In the present paper some constructions in definition of corresponding points in elliptic and hyperbolic involution are considered, some of these constructions are published for the first time. Besides, a proposition has been formulated: in a rectangular coordinate system the work for coordinates of two points related to a circle intersection with one coordinate axis is equal to the product for coordinates of two other points related to this circle intersection with the other coordinate axis. This proposition is fairly for imaginary points of circle intersection with coordinate axes as well.

Keywords:
transformations; harmonism; hyperbolic and elliptic involution; cross ratio of four points; quadratic map.
Text

Известно, что инволюция (рассматриваются, например, два совмещенных проективных ряда соответственных точек на прямой линии — инволюционный ряд точек) бывает трех типов [2; 3; 9–11; 21]:
• гиперболическая, когда две двойные точки являются действительными;
• эллиптическая, здесь две двойные точки являются мнимыми;
• параболическая, в этом случае имеем две совпавшие двойные точки.

References

1. Varushkin V.P. Ispol'zovanie SAPR dlja kursovogo proektirovanija [CAD Use for Course Design]. Geometriya i grafika [Geometry and Graphics]. 2014, v. 2, i. 3, pp. 41-45. (in Russian). DOI:https://doi.org/10.12737/5591.

2. Girsh A.G. Mnimosti v geometrii [Imaginaries in Geometry]. Geometriya i grafika [Geometry and Graphics]. 2014, v. 2, i. 2, pp. 3-8. (in Russian). DOI:https://doi.org/10.12737/5583.

3. Glagolev N.A. Proektivnaja geometrija [Projective geometry]. Moscow, Vysshaya shkola Publ., 1963. 344 p.

4. Grafskiy O.A. Vvedenie mnimykh elementov v nachertatel'nuu geometriu [Introduction of imaginary elements to descriptive geometry]. Khabarovsk, DVGUPS Publ., 2004. 168 p.

5. Grafskiy O.A. Modelirovanie mnimykh elementov na ploskosti [Simulation imaginary elements in the plane]. Khabarovsk, DVGUPS Publ., 2004. 162 p.

6. Grafskiy O.A. Osnovy affinnoy i proektivnoy geometrii [Basics of affine and projective geometry]. Khabarovsk, DVGUPS Publ., 2013. 135 p.

7. Grafskiy O.A. Teoretiko-konstruktivnye problemy modelirovaniya mnimykh elementov v nachertatel'noy geometrii i ee prilozheniyakh. Dokt. Diss. [Teoretiko-construktive problems of modeling of imaginary elements in descriptive geometry and its applications. Doct. Diss]. Moscow, 2004. 406 p.

8. Guznenkov V.N. Informacionnye tehnologii v graficheskih disciplinah tehnicheskogo universiteta [Information technologies in graphic disciplines of technical university]. Geometriya i grafika [Geometry and Graphics]. 2013, v. 1, i. 3/4, pp. 26-28. (in Russian). DOI:https://doi.org/10.12737/2128.

9. Ivanov G.S., Dmitrieva I.M. O zadachah nachertatel'noi geometrii s mnimymi reshenijаmi [On the tasks of descriptive geometry with imaginary solutions]. Geometriya i grafika [Geometry and Graphics]. 2015, v. 3, i. 2, pp. 3-8. (in Russian). DOI:https://doi.org/10.12737/12163.

10. Ivanov G.S. Teoreticheskie i konstruktivno-prikladnye voprosy kvadratichnykh kremonovykh involjucij. Kand. Diss. [Theoretical and constructive and applied questions square kremonovykh of involyution. Cand. Diss.]. Moscow, 1968. - 149 p.

11. Ivanov G.S. Teoreticheskie osnovy nachertatel'noy geometrii [Theoretical fundamentals of descriptive geometry]. Moscow, Mashinostroenie Publ., 1998. 157 p.

12. Innovatsii pri izuchenii studentami proektivnoy geometrii / Innovatsii v teorii geometricheskogo modelirovaniya pri izuchenii studentami tekhnicheskikh vuzov fundamental´nykh i spetsial´nykh distsiplin [Innovations in the study of projective geometry by students / Innovation in geometric modeling theory in the study of students of technical colleges the basic and special disciplines]. Khabarovsk, 2012. 106 p.

13. Loginovskiy A.N., Khmarova L.I., Usmanova E.A. Formirovanie i razvitie professional'nykh navykov studentov v kurse nachertatel'noy geometrii [Formation and Development of Professional Skills of Students When Studying Descriptive Geometry]. Geometriya i grafika [Geometry and Graphics]. 2015, v. 3, i. 2, pp. 46-51. (in Russian). DOI:https://doi.org/10.12737/12168.

14. Savel´ev Y.A. Grafika mnimykh chisel [Graphics of imaginary numbers]. Geometriya i grafika [Geometry and Graphics]. 2013, v. 1, i. 1, pp. 22-23. (in Russian). DOI:https://doi.org/10.12737/465.

15. Savel´ev Y.F. K opredeleniju chisla kornej uravneniy [How to define a number of roots of equations]. Geometriya i grafika. [Geometry and Graphics]. 2013, v. 1, i. 1, pp. 24-25. (in Russian). DOI:https://doi.org/10.12737/466.

16. Sal´kov N.A. Nachertatel'naya geometriya - baza dlja geometrii analiticheskoj [Geometry As the Basis for Analytical Geometry]. Geometriya i grafika [Geometry and Graphics]. 2016, v. 4, i. 1, pp. 44-54. (in Russian). DOI:https://doi.org/10.12737/18057.

17. Seregin V.I., Ivanov G.S., Senchenkova L.S., Borovikov I.F. Geometricheskie preobrazovaniya v nachertatel'noy geometrii i inzhenernoy grafike [Geometric Transformations in Descriptive Geometry And Engineering Graphics]. Geometriya i grafika [Geometry and Graphics]. 2015, v. 3, i. 2, pp. 23-28. (in Russian). DOI:https://doi.org/10.12737/12165.

18. Sokolova L.S. Mnogomernoe prostranstvo i nagljadnaya geometriya v uchebnoy programme po geometricheskoj podgotovke dlya bakalavriata [Multidimensional Space and Visual Geometry in the Curriculum Geometric Preparation for Undergraduate]. Geometriya i grafika [Geometry and Graphics]. 2015, v. 3, i. 1, pp. 40-46. (in Russian). DOI:https://doi.org/10.12737/10457.

19. Stolbova I.D. Ob obespechenii kachestva predmetnogo obucheniya studentov tehnicheskogo universiteta [Ensuring the Quality of Subject Teaching for Students at the Technical University]. Geometriya i grafika [Geometry and Graphics]. 2016, v. 3, i. 4, pp. 27-37. (in Russian). DOI:https://doi.org/10.12737/17348.

20. Usanova E.V. Formirovanie bazovogo urovnya geometrograficheskoy kompetentnosti v jelektronnom obuchenii [Formation of the Basic Level of Geometry and Graphics Competence of Students in E-Learning]. Geometriya i grafika [Geometry and Graphics]. 2016, v. 4, i. 1, pp. 64-72. (in Russian). DOI:https://doi.org/10.12737/18059.

21. Chetverukhin N.F. Proektivnaya geometriya [Projective geometry]. Moscow, Prosveshchenie Publ., 1969. 386 p.

22. Staudt K.G.Ch. Beitrage zur Geometrie der Lage. Nürnberg: Verlag der Fr. Korn`schen Buchhandlung. 1856. Heft 1. 129 p.

23. Staudt K.G.Ch. Beitrage zur Geometrie der Lage. Nürnberg: Verlag der Fr. Korn`schen Buchhandlung. 1856. Heft 2. Pp. 131-283.

24. Staudt K.G.Ch. Beitrage zur Geometrie der Lage. Nürnberg: Verlag der Fr. Korn`schen Buchhandlung. 1860. Heft 3. Pp. 285-396.

25. Staudt K.G.Ch. Geometrie der Lage. Nürnberg: Verlag von Bauer und Raspe. 1847. 216 p.

Login or Create
* Forgot password?