Abstract and keywords
Abstract (English):
We present results of the analysis of an unusually long narrow-band emission in the Pc1 range with increasing carrier frequency. The event was observed against the background of the main phase of a strong magnetic storm caused by arrival of a high-speed solar wind stream with a shock wave in the stream head and a long interval of negative vertical component of the interplanetary magnetic field. Emission of approximately 9-hour duration had a local character, appearing only at three stations located in the range of geographical longitude λ=100–130 E and magnetic shells L=2.2–3.4. The signal carrier frequency grew in a stepped mode from 0.5 to 3.5 Hz. We propose an emission interpreta-tion based on the standard model of the generation of ion cyclotron waves in the magnetosphere due to the resonant wave-particle interaction with ion fluxes of moderate energies. We suppose that a continuous shift of the generation region, located in the outer area of the plasmasphere, to smaller L-shell is able to explain both the phenomenon locality and the range of the frequency increase. A narrow emission frequency band is associated with the formation of nose-like structures in the energy spectrum of ion fluxes penetrating from the geomagnetic tail into the magnetosphere. We offer a possible scenario of the processes leading to the generation of the observed emission. The scenario contains specific values of the generation region position, plasma density, magnetic field, and resonant proton energies. We discuss morphological differences of the emissions considered from known types of geomagnetic pulsations, and reasons for the occurrence of this unusual event.

Geomagnetic pulsations, Ion cyclotron waves, Plasmapause, Ion flux, Magnetic storm, Interplanetary magnetic field, High-speed stream, Solar wind
Publication text (PDF): Read Download

1. Bräysy T., Mursula K., Marklund G. Ion cyclotron waves during a great magnetic storm observed by Freja double-probe electric field instrument. J. Geophys. Res. 1998, vol. 103, pp. 4145–4155. DOI: 10.1029/97JA02820.

2. Burke W.J., Maynard N.C., Hagan M.P., Wolf R.A., Wilson G.R., Gentile L.C., Gussenhoyen M.S., Huang C.Y., Garner T.W., Rich F.J. Electrodynamics of the inner magnetosphere observed in the dusk sector by CRRES and DMSP during the magnetic storm of June 4–6, 1991. J. Geophys. Res. 1998, vol. 103, pp. 29399–29418.

3. Carpenter D.L., Anderson R.R. An ISEE/whistler model of equatorial electron density in the mag-netosphere. J. Geophys. Res. 1992, vol. 97, pp. 1097–1108. DOI: 10.1029/91JA01548.

4. Cho J., Lee D.-Y., Kim J.-H., Shin D.-K., Kim K.-C., Turner D. New model fit functions of the plasmapause location determined using THEMIS observations during the ascending phase of Solar Cycle 24. J. Geophys. Res.: Space Phys. 2015, vol. 120, pp. 2877–2889. DOI: 10.1002/2015JA021030.

5. Cornwall J.M. Cyclotron instabilities and electromagnetic emission in the ultra low frequency and very low frequency ranges. J. Geophys. Res. 1965. vol. 70, no. 1. pp. 61–69. DOI: 10.1029/JZ070i001p00061.

6. Dandouras I.S., Reme H., Cao J., Escoubet P. Magnetosphere response to the 2005 and 2006 extreme solar events as observed by the Cluster and Double Star spacecraft. Adv. Space Res. 2009, vol. 43, pp. 618–623.

7. Ermakova E.N., Yakhnin A.G., Yakhnina T.A., et al. Sporadic geomagnetic pulsations at frequencies up to 15 Hz during the November 7–14, 2004 magnetic storm: Peculiarities of amplitude and polarization spectra and relationship with ion-cyclotron waves in the magnetosphere. Izvestiya vuzov. Radiofizika [Radiophysics and Quantum Electronics]. 2015, vol. 58, no. 8, pp. 607–622. (In Russian).

8. Feygin F.Z., Kleimenova N.G., Pokhotelov O.A., Parrot M., Prikner K., Mursula K., Kangas J., Pik-karainen T. Nonstationary pearl pulsations as a signature of magnetospheric disturbances. Ann. Geo-physicae. 2000, vol. 18, no. 5, pp. 517–522.

9. Ganushkina N.Yu., Pulkkinen T.I., Sergeev V.A., Kubyshkina M.V., Baker D.N., Turner N.E., Grande M., Kelett B., Fennell J., Roeder J., Sauvaud J.-A., Fritz T.A. Entry of plasma sheet particles into the inner magnetosphere as observed by Polar/CAMMICE. J. Geophys. Res. 2000, vol. 105, pp. 25205–25219.

10. Glangeaud F., Lacoume J.-L. Study of Pc1 propagation in presence of ionization gradients aligned on a terrestrial magnetic field. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. 1971, serie B, vol. 272, no. 6, pp. 397–400. (In French).

11. Goldstein J., Sandel B.R., Forrester W.T., Thomsen M.F., Hairston M.R., Global plasmasphere evolution 22–23 April 2001. J. Geophys. Res. 2005, vol. 110, A12218. DOI: 10.1029/ 2005JA011282.

12. Guglielmi A.V., Dovbnya B.V. Hydromagnetic emission of the interplanetary plasma. Pis’ma v ZhETF [JETP Lett.]. 1973, vol. 18, iss. 10, pp. 601–604. (In Russian).

13. Guglielmi A.V., Troitskaya V.A. Geomagnitnye pulsatii i diagnostica magnitosfery. Moscow: Nauka Publ., 1973. 208 p. (In Russian).

14. Guglielmi A.V., Zolotukhina N.A. Generation of MHD waves of increasing frequency in the Earth’s magnetosphere. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1978, vol. 18, no. 2, pp. 307–311. (In Russian).

15. Guglielmi A.V., Troitskaya V.A., Dovbnya B.V., Potapov A.S. Diagnostics of a cold plasma and energetic particles by dispersion analysis of pearls. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Research on Geomagnetism, Aeronomy and Solar Physics] 1972. Iss. 24. pp. 3–12. (In Russian).

16. Guglielmi A., Kangas J. Pc1 waves in the system of solar terrestrial relations: New reflections. J. At-mosph. Solar-Terrestrial Phys. 2007, vol. 69, pp. 1635–1643. DOI: 10.1016/ j.jastp.2007.01.015.

17. Kangas J., Guglielmi A., Pokhotelov O. Morphology and physics of short-period magnetic pulsations (a review). Space Sci. Rev. 1998, vol. 83, pp. 435–512.

18. Kim K.-H., Shiokawa K., Mann I.R., Park J.-S., Kwon H.-J., Hyun K., Jin H., Connors M. Longitudinal frequency variation of long-lasting EMIC Pc1-Pc2 waves localized in the inner magne-tosphere. Geophys. Res. Lett. 2016, vol. 43, pp. 1039–1046. DOI: 10.1002/2015GL067536.

19. Liu X., Liu W., Cao J.B., Fu H.S., Yu J., Li X. Dynamic plasmapause model based on THEMIS measurements. J. Geophys. Res.: Space Phys. 2015, vol. 120, pp. 10543–10556. DOI: 10.1002/2015JA021801.

20. Mann I.R., Milling D.K., Rae I.J., et al. The upgraded CARISMA magnetometer array in the THEMIS era. Space Sci. Rev. 2008, vol. 141, pp. 413–451. DOI:1 0.1007/s11214-008-9457-6.

21. Matveeva E.T., Kalisher A.L., Dovbnya B.V. Physical conditions in the magnetosphere and the inter-planetary space during excitation of type Pc1 geomagnetic pulsations. Geomagn. Aeron. 1972, vol. 12. pp. 977–978.

22. Mazur V.A., Potapov A.S. The evolution of pearls in the Earth`s magnetosphere. Planet. Space Sci. 1983, vol. 31, no. 8, pp. 859–863.

23. Moldwin M.B., Downward L., Rassoul H.K., Amin R., Anderson R.R. A new model of the location of the plasmapause: CRRES results. J. Geophys. Res. 2002, vol. 107, A11, pp. 1339. DOI: 10.1029/2001JA009211.

24. Mursula K., Kangas J., Kerttula R., Pikkarainen T., Guglielmi A., Pokhotelov O., Potapov A. New constraints on theories of Pc 1 pearl formation. J. Geophys. Res. 1999, vol. 104, A6, pp. 12399–12406.

25. Pickett J.S., Grison B., Omura Y., Engebretson M.J., Dandouras I., Masson A., Adrian M.L., Santolík O., Décréau P.M. E., Cornilleau-Wehrlin N., Constantinescu D. Cluster observations of EMIC triggered emissions in association with Pc1 waves near Earth´s plasmapause. Geophys. Res. Lett. 2010, vol. 37, L09104, DOI: 10.1029/2010GL042648.

26. Polyushkina T.N., Dovbnya B.V., Potapov A.S., et al. Frequency structure of spectral bands of the ionospheric Alfven resonator and parameters of the ionosphere. Geofizicheskie issledovaniya [Geophys. Res.]. 2015, vol. 16, no. 2, pp. 39–57. (In Russian).

27. Sizova L.Z., Shevnin A.D., Zolotukhina N.A. Correlation between oscillations of decreasing period and the field of Dst variations. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1977, vol. 17, no. 6, pp. 1070–1075. (In Russian).

28. Smith P.H., Hoffman R.A. Direct observations in the dusk hours of the characteristics of the storm time ring current particles during the beginning of magnetic storms. J. Geophys. Res. 1974, vol. 79, no. 7, pp. 966–971. DOI: 10.1029/JA079i007p00966.

29. Søraas F., Laundal K.M., Usanova M. Coincident particle and optical observations of nightside subau-roral proton precipitation. J. Geophys. Res.: Space Phys. 2013, vol. 118, pp. 1112–1122. DOI: 10.1002/jgra.50172.

30. Verbanac G., Pierrard V., Bandić M., Darrouzet F., Rauch J.-L., Décréau P. The relationship between plasmapause, solar wind and geomagnetic activity between 2007 and 2011. Ann. Geophys. 2015, vol. 33, no. 10, pp. 1271–1283.

31. Yahnin A.G., Yahnina T.A., Frey H.U. Subauroral proton spots visualize the Pc1 source. J. Geophys. Res. 2007, vol. 112, A10223. DOI: 10.1029/2007JA012501.

32. Zhang J.-C., Kistler L.M., Spence H.E., Wolf R.A., Reeves G., Skoug R., Funsten H., Larsen B.A., Niehof J.T., MacDonald E.A., Friedel R., Ferradas C.P., Luo H. “Trunk-like” heavy ion structures ob-served by the Van Allen Probes. J. Geophys. Res.: Space Phys. 2015, vol. 120, no. 10, pp. 8738–8748. DOI: 10.1002/2015JA021822.

33. Zolotukhina N.A., Bondarenko N.M. Formation of energy spectrum of particles during a drift deep into the magnetosphere from its tail. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Research on Geomagnetism, Aeronomy and Solar Physics]. 1976, iss. 39, pp. 3–7. (In Russian).

34. URL: (accessed August 5, 2016).

35. URL: (accessed August 5, 2016).

36. URL: (accessed August 5, 2016).

37. URL: (accessed August 5, 2016).

38. URL: (accessed August 5, 2016).

39. URL: (accessed August, 5 2016).

Login or Create
* Forgot password?