FORMAL REPRESENTATION OF INCIDENCE CONDITIONS IN MULTIDIMENSIONAL PROJECTIVE SPACES
Abstract and keywords
Abstract (English):
Synthetic and analytical methods are usually used to investigate multidimensional spaces and sets of subspaces. Shortcomings of a synthetic method — the appeal to spatial imagination and the researcher´s intuition, impossibility of formalization, need of creation of big and complex logical constructions don´t allow to go beyond four-dimensional space, with rare exceptions. The theory of enumerative geometry submitted as geometry of conditions with a basic element – a multidimensional flags incidence condition allows solve many problems which up to now were considered as insoluble ones. The simplest of such problems is a classical problem for calculation of final number of given space’s subspaces meeting the set of given conditions (the normal problem of algebraic geometry). A more serious problem – calculation a number and values of algebraic characteristics for given variety in given space. For this problem solution it was necessary to develop a formalized method, as well as technique algorithmization. This problem has been solved by professor. V.Ya. Volkov in his doctoral dissertation by means of developed by him so-called e-calculations. For an understanding of e-calculation fundamentals or calculation of Schubert conditions a rather good mathematical background and method promotion are necessary. The last demands consideration of various approaches to conditions calculation problem. In the present paper are considered the simplest cases of a tabular method for conditions calculation, in relation to conditions of incidence which is understood in a general sense. Calculation of one-, two- and ((k + 1) (n – k) – 1)-dimensional conditions are considered. Conditions calculation formalization and incidence conditions reduction are explained. The problem about a final number of straight lines crossing the set number of k-planes in n-dimensional space is considered as an example. In particular, the problem about a number of straight lines crossing some number of the set straight lines can be correct only in three- and four-dimensional spaces. Conditions of the minimum multiplicity equal to three exist only in (3k + 1)-dimensional spaces. Conditions of the multiplicity equal to four exist only in odd dimensionality spaces. And so on. The concrete number of straight lines in all cases can be counted by reduction of the corresponding conditions.

Keywords:
dimension, flag, k-plane, incidence condition, reduction of condition
Text

При изучении многомерных пространств обычно используют следующие фундаментальные результаты [12; 15; 23; 24]. Во-первых, формулу Грассмана размерности множества k-плоскостей в n-мерном пространстве

dim G(n, k) = (k + 1)(n – k).

Во многих монографиях и учебниках эта формула легко доказывается аналитически или при помощи исчисления параметров. Во-вторых, формулу размерности k пространства пересечения m-плоскости и p-плоскости общего положения

k = m + p – n. (2)

Если значение k оказывается отрицательным, то считают, что данные подпространства не пересекаются или скрещиваются. Из формулы Грассмана можно сделать вывод, что различные множества k-плоскостей в n-мерном пространстве могут иметь размерность

0 # dim G(n, k) # (k + 1)(n – k).

Если множество k-плоскостей подчинено какому-либо условию, то размерность множества уменьшается. Минимальное значение соответствует конечному числу k-плоскостей, максимальное – грассманову многообразию k-плоскостей, на которое не накладывается никаких условий. 

References

1. Volkov V.Ja. Algoritmy razlozhenija slozhnyh uslovij v ischislitel´noj geometrii [Algorithms of decomposition of complex conditions in enumerative geometry]. Avtomatizacija analiza i sinteza struktur JeVM i vychislitel´nyh algoritmov [Automating the analysis and synthesis of structures of computer and computational algorithms]. Novosibirsk, 1977, pp. 108-110.

2. Volkov V.Ya., Yurkov V.Yu. Ischislenie Shuberta i problema mnogoznachnyh sootvetstvij [Calculation of Schubert and the problem of multi-valued correspondences]. Vtoroj Sibirskij Kongress po Prikladnoj i Industrial´noj Matematike (INPRIM-96) [Second Siberian Congress on Industrial and Applied Mathematics (INPRO-96)]. Novosibirsk, 1996, p. 70.

3. Volkov V.Ya., Yurkov V.Yu. Konstruirovanie shubertovyh mnogoobrazij i ih primenenie [Construction shubertovyh manifolds and their applications]. Geometricheskoe modelirovanie i komp´juternaja grafika [Geometric modeling and computer graphics]. St. Petersburg, 1992, pp. 45-50.

4. Volkov V.Ya., Yurkov V.Yu., Panchuk K.L., Kaigorodtseva N.V. Kurs nachertatel´noj geometrii na osnove geometricheskogo modelirovanija [Course descriptive geometry based on geometric modeling]. Omsk, SibADI Publ., 2010. 253 p.

5. Volkov V.Ya., Yurkov V.Yu. Mnogomernaya ischislitel´naya geometriya: osnovnye zadachi [Multidimensional enumerative geometry: the main problem]. Vestnik Sibirskoy avtomobil´nodorozhnoy akademii (SibADI) [Bulletin of the Siberian automobile and road Academy]. 2005, I. 3, pp. 54-59.

6. Volkov V.Ya., Yurkov V.Yu. Mnogomernaja ischislitel´naja geometrija [Multidimensional enumerative geometry]. Omsk, OmGPU Publ., 2008. 244 p.

7. Volkov V.Ya., Yurkov V.Yu. Nekotorye voprosy teorii i prilozhenija ischislitel´noj geometrii [Some questions of the theory and applications of enumerative geometry]. Geometricheskie modeli i algoritmy [Geometric models and algorithms]. 1988, pp. 31-36.

8. Volkov V.Ya., Yurkov V.Yu. Reduciruemye proizvedenija mnogomernyh ciklov Shuberta [Reducible multidimensional works of Schubert cycles]. Matematika i informatika: nauka i obrazovanie [Mathematics and Computer Science: Science and Education]. Omsk, OmGPU Publ., 2002, pp. 8-13.

9. Volkov V.Ja. Teorija parametrizacii i modelirovanija geometricheskih ob"ektov mnogomernyh prostranstv i ejo prilozhenija. Kand Diss. [Theory parameterization and simulation geometry of multidimensional spaces and its applications. Kand. Diss]. Moscow, 1983. 28 p.

10. Volkov V.Ya., Yurkov V.Yu. Shubertovy mnogoobrazija, ih svojstva i primenenie [Shubertovy diversity, their properties and applications]. Prikladnaja geometrija i inzhenernaja grafika [Applied geometry and engineering graphics]. Kiev, 1990, pp. 23-25.

11. Glagolev A.A., Glagoleva A.A. Chislovaja geometrija [Numerical geometry]. Moscow, VPALI Publ., 1936. 72 p.

12. Griffits F., Harris J. Principy algebraicheskoj geometrii [Principles of algebraic geometry]. Moscow, Mir Publ., 1982, V. 1, 496 p., V. 2, 366 p.

13. Klein F. Lekcii o razvitii matematiki v XIX stoletii [Development of mathematics in the XIX century]. Moscow, Nauka Publ., 1989, V. 1, 456 p.

14. Popov I.A. Princip sohranenija chisla [The principle of conservation of]. Sbornik statej po algebraicheskoj geometrii. Trudy nauchno-tehnicheskoj konferencii Voenno-transportnoj akademii [Collection of papers on algebraic geometry. Proceedings of the scientific conference of the Military Transport Academy]. 1938, I. 2, pp. 73-77.

15. Harris J. Algebraicheskaja geometrija. Nachal´nyj kurs [Algebraic geometry. Basic]. Moscow, MCNMO Publ., 2005. 400 p.

16. Yurkov V.Yu. Ischislenie Shuberta i mnogoznachnye sootvetstvija [Calculation of Schubert and many-valued conformity]. Omskij nauchnyj vestnik [Omsk Scientific Bulletin]. Omsk, 1998, pp. 57-59.

17. Yurkov V.Yu. Ischislitel´nye zadachi dlja mnogoobrazij kombinatornoj struktury [Enumerative problem for varieties of combinatorial structures]. Omskij nauchnyj vestnik [Omsk Scientific Bulletin]. Omsk, OmGTU Publ., 2009, I. 3(83), pp. 44-48.

18. Yurkov V.Yu. Ischislitel´nyj metod geometrii [Enumerative geometry method]. Al´manah sovremennoj nauki i obrazovanija [Almanac of modern science and education]. Tambov, «Gramota» Publ., 2009, I. 6, pp. 232-236.

19. Yurkov V.Yu. Konechnye mnozhestva linejnyh ob"ektov i uslovija incidentnosti [The final set of linear objects and the incidence conditions]. VINITI Publ., 8 p.

20. Yurkov V.Yu. O proizvedenii neodnotipnyh uslovij Shuberta [On the product neodnotipnyh Schubert conditions]. VINITI Publ., 7 p.

21. Yurkov V.Yu. Osnovnye uravnenija svjazi neodnotipnyh uslovij v mnogomernyh prostranstvah [Basic equations due varied conditions in multidimensional spaces]. VINITI Publ., 9 p.

22. Yurkov V.Yu. Cepi i cikly uslovij Shuberta [Chains and cycles of Schubert conditions]. Al´manah sovremennoj nauki i obrazovanija [Almanac of modern science and education]. Tambov, «Gramota» Publ., 2009, I. 12, pp. 141-143.

23. Baker H.F. Principles of Geometry. New York: Frederick Ungar Publishing Co., 1960. Vol. IV-VI.

24. Kleiman S.L., D. Laskov Schubert calculus // Amer. Math. Monthly. 1972. No. 79. P. 1061-1082.

Login or Create
* Forgot password?