Abstract and keywords
Abstract (English):
The world-wide spatial distribution of the wave power in the Pc5 band during magnetic storms has been compared with auroral oval boundaries. The poleward and equatorward auroral oval boundaries are estimated using either the British Antarctic Survey database containing IMAGE satellite UV observations of the aurora or the OVATION model based on the DMSP particle data. The “epicenter” of the spectral power of broadband Pc5 fluctuations during the storm growth phase is mapped inside the auroral oval. During the storm recovery phase, the spectral power of narrowband Pc5 waves, both in the dawn and dusk sectors, is mapped inside the auroral oval or around its equatorward boundary. This observational result confirms previously reported effects: the spatial/temporal variations of the Pc5 wave power in the morning/pre-noon sector are closely related to the dynamics of the auroral electrojet and magnetospheric field-aligned currents. At the same time, narrowband Pc5 waves demonstrate typical resonant features in the amplitude-phase latitudinal structure. Thus, the location of the auroral oval or its equatorward boundary is the preferred latitude for magnetospheric field-line Alfven resonator excitation. This effect is not taken into account by modern theories of ULF Pc5 waves, but it could be significant for the development of more adequate models.

Magnetic storms, Pc5 pulsations, auroral oval
Publication text (PDF): Read Download

1. Bochev A.Z., Kudela K., Dimitrova I.A., Nenovski P., Sinha A.K., Slivka M. Observations of Pc5 pulsations near field-aligned current regions. Studia Geophysica et Geodaetica. 2009, vol. 53, pp. 537–556.

2. Chen L., Hasegawa A. A theory of long period magnetic pulsations: 1. Steady state excitation of field line resonances. J. Geophys. Res. 1974, vol. 79, pp. 1024–1032.

3. Coult N., Pilipenko V., Engebretson M. Suppression of resonant field line oscillations by a turbulent background. Planetary and Space Science. 2007, vol. 55, pp. 694–700.

4. Fedorov E., Pilipenko V., Engebretson M.J. ULF wave damping in the auroral acceleration region. J. Geophys. Res. 2001, vol. 106, pp. 6203–6212.

5. Hartinger M.D., Turner D.L., Plaschke F., Angelopoulos V., Singer H.J. The role of transient ion foreshock phenomena in driving Pc5 ULF wave activity. J. Geophys. Res. 2013, vol. 118. DOI: 10.1029/2012JA018349.

6. Hartinger M. D., Moldwin M. B., Zou S., et al. ULF wave electromagnetic energy flux into the ionosphere: Joule heating implications. J. Geophys. Res. 2015, vol. 120, pp. 494–510.

7. Kessel R.L., Mann I.R., Fung S.F., Milling D.K., Connell N. Correlation of Pc5 wave power inside and outside the magnetosphere during high speed streams. Annales Geophysicae. 2004, vol. 22, pp. 629–641.

8. Kleimenova N.G., Kozyreva O.V., Bitterly M., Schott J.-J. Long-period (1–6 mHz) geomagnetic pulsations during growth phase of large magnetic storm Feb. 21, 1994. Geomagnetism and Aeronomy. 2000, vol. 40, pp. 16–25.

9. Kleimenova N.G., Kozyreva O.V., Manninen J., Ranta A. Unusual strong quasi-monochromatic ground Pc5 geomagnetic pulsations in the recovery phase of November 2003 superstorm. Annales Geophysicae. 2005, vol. 23, pp. 2621–2634.

10. Kozyreva O.V., Pilipenko V.A., Engebretson M.J., Yumoto K., Watermann J., Romanova N. In search of new ULF wave index: Comparison of Pc5 power with dynamics of geostationary relativistic electrons. Planetary and Space Science. 2007, vol. 55, pp. 755–769.

11. Lam H.L., Rostoker G. The relationship of Pc5 micro-pulsation activity in the morning sector to the auroral westward electrojet. Planetary and Space Science.1978, vol. 26, pp. 473–492.

12. Lepidi S., Francia P. Low-frequency (1–4 mHz) geomagnetic field fluctuation power at different latitudes for a diagnosis of the auroral oval position. Memorie della Societa Astronomica Italiana. 2003, vol. 74, pp. 762–765.

13. Mager P.N., Berngardt O.I., Klimushkin D.Yu., Zolotukhina N.A., Mager O.V. First results of the high-resolution multibeam ULF wave experiment at the Ekaterinburg SuperDARN radar: Ionospheric signatures of coupled poloidal Alfvén and drift-compressional modes. J. Atmosph. and Solar-Terrestrial Physics. 2015, vol. 130–131, pp. 112–126.

14. Mann I.R., Murphy K.R., Ozeke L.G., et al. The role of ULF waves in radiation belt dynamics. Dynamics of the Earth´s Radiation Belts and Inner Magnetosphere. Washington, American Geophysical Union Publ., 2012, pp. 69–91. (Geophysical Monograph. Vol. 199). DOI: 10.1029/ 2012GM001349.

15. Menk F.W., Waters C.L. Magnetoseismology: Ground-based remote sensing of Earth´s magnetosphere. Wiley VCH. 2013, 251 p. DOI: 10.1002/9783527652051.

16. Nakariakov V.M., Pilipenko V., Heilig B., et al., Magneto-hydrodynamic oscillations in the solar corona and Earth’s magnetosphere: Towards consolidated understanding. Space Sci. Rev. 2016, pp. 1–129. DOI: 10.1007/ s11214-015-0233-0.

17. Newell P.T., Feldstein Y.I., Galperin Yu.I., Meng C.-I. The morphology of nightside precipitation. J. Geophys. Res. 1996, vol. 101, pp. 10737–10748.

18. Pahud D.M., Rae I.J., Mann I.R., Murphy K.R., Amalraj V. Ground-based Pc5 ULF wave power: Solar wind speed and MLT dependence. J. Atmosph. Solar-Terr. Phys. 2009, vol. 71, pp. 1082–1092.

19. Pilipenko V.A., Fedorov E.N. Magnetotelluric sounding of the crust and hydromagnetic monitoring of the magnetosphere with the use of ULF waves. Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves. Washington, American Geophysical Union Publ., 1994, pp. 283–292. (Geophysical Monograph. Vol. 81). DOI: 10.1029/GM081.

20. Pilipenko V., Watermann J., Popov V., Papitashvili V. Relationship between auroral electrojet and Pc5 ULF waves. J. Atmosph. Solar-Terr. Phys. 2001, vol. 63, pp. 1545–1557.

21. Pilipenko V.A., Klimushkin D.Yu., Mager P.N., Engebretson M.J., Kozyreva O.V. Generation of resonant Alfven waves in the auroral oval. Annales Geophysicae. 2016, vol. 34, pp. 241–248.

22. Posch J.L., Engebretson M.J., Pilipenko V.A., et al. Charac-terizing the long period ULF response to magnetic storms. J. Geophys. Res. 2003, vol. 108, pp. 1029. DOI:10.1029/ 2002JA009386.

23. Potemra T.A., Zanetti L.J., Bythrow P.F., et al. Resonant geomagnetic field oscillations and Birkeland currents in the morning sector. J. Geophys. Res. 1988, vol. 93, pp. 2661–2674.

24. Rae I.J., Donovan E.F., Mann I.R. et al. Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval. J. Geophys. Res. 2005, vol. 110, pp. A12211. DOI: 10.1029/2005JA011007.

25. Rae I.J., Watt C.E.J., Fenrich F.R., Mann I.R., Ozeke L.G., Kale A. Energy deposition in the ionosphere through a global field line resonance. Annales Geophysicae. 2007, vol. 25, pp. 2529–2539.

26. Rae I.J., Mann I.R., Murphy K.R. et al. Ground-based magnetometer determination of in situ Pc4–5 ULF electric field wave spectra as a function of solar wind speed. J. Geophys. Res. 2012, vol. 117, pp. A04221. DOI: 10.1029/ 2011JA017335.

27. Raspopov O.M., Afanasieva L.T. Localization of the Pc5-source and the auroral oval, Acta Geodaetica et Geophysica Hungarica. 1982, vol. 1792, pp. 267–276.

28. Romanova N., Pilipenko V., Crosby N., Khabarova O. ULF wave index and its possible applications in space physics, Bulgarian J. Phys. 2007, vol. 34, pp. 136–148.

29. Rönnmark K. Auroral current–voltage relation. J. Geo-phys. Res. 2002, vol. 107, pp. 1430. DOI: 10.1029/ 2002JA009294.

30. Rostoker G., Lam H-L. A generation mechanism for Pc5 micropulsations in the morning sector. Planetary and Space Sci. 1978, vol. 26, pp.493–505.

31. Saka O., Kim J.S., Sugiura M. A cross-spectral analysis of high-latitude Pc5 pulsations in the morning sector. J. Geophys. Res. 1982, vol. 87. pp. 9129–9134.

32. Samson J.C., Rankin R., Tikhonchuk V.T. Optical signatures of auroral arcs produced by field line resonances: Comparison with satellite observations and modeling. Annales Geophysicae. 2003, vol. 21, pp. 933–945.

33. Schott J.-J., Kleimenova N.G., Bitterly J., Kozyreva O.V. The strong Pc5 geomagnetic pulsations in the initial phase of the great magnetic storm of March 24, 1991. Earth, Planets and Space. 1998, vol. 50, pp. 101–106.

34. Simms L.E., Engebretson M.J., Posch J.L., Hughes W.J. Effects of the equatorward auroral boundary location and solar wind parameters on Pc5 activity at auroral zone stations: A mul-tiple regression analysis. J. Geophys. Res. 2006, vol. 111, pp. A10217. DOI: 10.1029/ 2005JA011587.

35. Southwood D.J. Some features field line resonance in the magnetosphere. Planetary and Space Science. 1974, vol. 22, pp. 483–491.

36. Sutcliffe P.R., Rostoker G. Dependence of Pc5 micropulsation power on conductivity variations in the morning sector. Planetary and Space Science. 1979, vol. 27. pp. 631–642.

37. Takahashi K. ULF waves in the magnetosphere. Rev. Geophysics, Supplement. 1991, vol. 29, pp. 1066–1074.

38. Tamao T. Transmission and coupling resonance of hydromagnetic disturbances in the non-uniform Earth´s magnetosphere. Science Reports of the Tohoku University. Ser. 5, Geophysics. 1965, vol. 17, pp. 43–72.

39. Vogt J., Haerendel G. Reflection and transmission of Alfven waves at the auroral acceleration region. Geophys. Res. Lett. 1998, vol. 25, pp. 277–280.

40. Walker A.D.M. Magnetohydrodynamic waves in geospace: The theory of ULF waves and their interaction with energetic particles in the solar-terrestrial environment. Bristol: Institute of Physics. 2004, 549 p.

41. Walker A.D.M., Greenwald R.A., Stuart W.F., Green C.A. STARE auroral radar observations of Pc5 geomagnetic pulsations. J. Geophys. Res. 1979, vol. 84, pp. 3373–3388.

42. Ziesolleck C.W.S., McDiarmid D.R. Auroral latitude Pc5 field line resonances: Quantized frequencies, spatial characteristics, diurnal variation. J. Geophys. Res. 1994, vol. 99, pp. 5817–5830.

43. URL: (accessed December 8, 2015)

44. URL: November 11, 2014)

45. URL: (accessed July 2, 2015)

46. URL: (accessed March 7, 2015)

47. URL: (accessed March 19, 2015)

48. URL: (accessed February 9, 2015)

49. URL: (accessed October 11, 2015)

50. URL: (accessed February 3, 2015)

51. URL: (accessed April 5, 2015)

Login or Create
* Forgot password?