Abstract and keywords
Abstract (English):
The paper describes internal gravity waveguide modes, using dissipative solutions above the source. We compare such a description with an accurate approach and a WKB approximation for dissipationless equations. For waveguide disturbances, dispersion relations calculated by any method are shown to be close to each other and to be in good agreement with observed characteristics of traveling ionospheric disturbances. Unlike other methods, dissipative solutions above the source allow us to adequately describe the spatial structure of disturbances in the upper atmosphere.

Internal gravity waves, waveguide propagation, traveling ionospheric disturbances
Publication text (PDF): Read Download

1. Afraimovich E.L., Kosogorov E.A., Lesyuta O.S., Ushakov I.I., Yakovets A.F. Geomagnetic control of the spectrum of traveling ionospheric disturbances based on data from a global GPS network. Ann. Geophys. 2001, vol. 19, iss. 7, pp. 723–731. DOI: 10.5194/angeo-19-723-2001.

2. Akhmedov P.P., Kunitsyn V.E. Modeling of ionospheric disturbances caused by earthquakes and explosions. Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy] 2004, vol. 44, no. 1, pp. 1–8 (in Russian).

3. Francis S.H. Acoustic-gravity modes and large-scale traveling ionospheric disturbances of a realistic, dissipative atmosphere. J. Geophys. Res. 1973a, vol. 78, p. 2278.

4. Francis S.H. Lower-atmospheric gravity modes and their relation to medium scale traveling ionospheric disturbances. J. Geophys. Res. 1973b, vol. 78, pp. 8289–8295.

5. Heale C.J., Snively J.B., Hickey M.P., Ali C.J. Thermospheric dissipation of upward propagating gravity wave packets. J. Geophys. Res.: Space Physics. 2014, vol. 119, iss. 5, pp. 3857–3872. DOI: 10.1002/2013JA019387.

6. Hedlin Michael A.H., Drob Douglas P. Statistical characterization of atmospheric gravity waves by seismoacoustic observations. J. Geophys. Res. Atmos. 2014, vol. 119, iss. 9, pp. 5345–5363. DOI: 10.1002/2013JD021304.

7. Hines C.O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 1960, vol. 38, pp. 1441–1481.

8. Hocke K., Schlegel K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann. Geophys. 1996, vol. 14, pp. 917–940.

9. Hunsucker R.V. Atmospheric propagation of atmospheric gravity waves: A review. Rev. Geophys. Space Phys. 1982, vol. 20, pp. 293–315.

10. Idrus Intan Izafina, Abdullah Mardina, Hasbi Alina Marie, Husin Asnawi, Yatim Baharuddin. Large-scale traveling ionospheric disturbances observed using GPS receivers over high-latitude and equatorial regions. J. Atmos. Solar-Terr. Phys. 2013, vol. 102, pp. 321–328. DOI: 10.1016/j.jastp.2013.06.014.

11. Kirchengast G., Hocke K., Schlegel K. Gravity waves determined by modelling of travelling ionospheric disturbances in incoherent scatter radar measurements. Radio Science. 1995, vol. 30, pp. 1551–1567.

12. Ma S.Y., Schlegel K., Xu J.S. Case studies of the propagation characteristics of auroral TIDs with EISCAT CP2 data using maximum entropy cross-spectral analysis. Ann. Geophys. 1998, vol. 16, no. 2, pp. 161–167.

13. Medvedev A.V., Ratovsky K.G., Tolstikov M.V., Kushnarev D.S. Method for studying space-time structure of wave disturbances in the ionosphere. Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy] 2009, vol. 49, no. 6, pp. 812–823 (in Russian).

14. Medvedev A.V., Ratovsky K.G., Tolstikov M.V., Alsatkin S.S., Scherbakov A.A.. Studying of the spatial–temporal structure of wavelike ionospheric disturbances on the base of Irkutsk incoherent scatter radar and digisonde data. J. Atmos. Solar-Terr. Phys. 2013, vol. 105, pp. 350–357.

15. Oliver W.L., Fukao S., Sato T., Tsuda T., Kato S., Kimura I., Ito A., Saryou T., Araki T. Ionospheric incoherent scatter measurements with the middle and upper atmosphere radar: Observations during the large magnetic storm of February 6–8. J. Geophys. Res. 1988, vol. 93, no. A12, pp. 14649–14655.

16. Ratovsky K.G., Medvedev A.V., Tolstikov M.V., Kushnarev D.S. Case studies of height structure of TID propagation characteristics using cross-correlation analysis of incoherent scatter radar and DPS-4 ionosonde data. Adv. Space Res. 2008, vol. 41, pp. 1453–1457.

17. Rudenko G.V., Dmitrienko I.S. Wave above the source in the heat-conducting atmosphere. Solnechno-Zemnaya Fizika [Solar-Terrestrial Physics]. 2015, vol. 1, iss. 4, pp. 11–29 (in Russian).

18. Shibata T., Okuzawa T. Horizontal velocity dispersion of medium-scale travelling ionospheric disturbances in the F-region. J. Atmos. Terr. Phys. 1983, vol. 45, pp. 149–159.

19. Vadas S.L., Nicolls M.J. Using PFISR measurements and gravity wave dissipative theory to determine the neutral, background thermospheric winds. Geophys. Res. Lett. 2008, vol. 35, iss. 2, CiteID L02105. URL: 031522 (accessed August 15, 2015).

20. Vadas S.L., Nicolls M.J. The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Theory. J. Geophys. Res. 2012, vol. 117, iss. A5, CiteID A05322. DOI: 10.1029/2011JA017426.

21. Vadas Sharon L., Liu Han-li. Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves. J. Geophys. Res. 2009, vol. 114, iss. A10, CiteID A10310. DOI: 10.1029/2009 JA014108.

22. Williams P.J.S., Virdi T.S., Lewis R.V., Lester M., Rodger A.S., Freeman K.S.C. Worldwide atmospheric gravity wave study in the European sector 1985–1990. J. Atmos. Solar-Terr. Phys. 1993, vol. 55, no. 4–5, pp. 683–696.

Login or Create
* Forgot password?