Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk State University (student)
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Yakutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Kaliningrad, Kalinigrad, Russian Federation
The dynamics of the parameters of ionized and neutral components of Earth’s upper atmosphere at midlatitudes near the equinox was studied for several days under quiet geomagnetic conditions. The ionospheric parameters were obtained by an incoherent scatter radar; the parameters of the neutral atmosphere at ionospheric altitudes, from characteristics of the atomic oxygen glow at a wavelength of 630 nm with a Fabry—Perot interferometer. Synchronous variations similar in relative amplitudes were detected in the glow intensity and plasma concentration, the nature of which was explained using numerical modeling, as well as a combination of model and empirical data. It is shown that the vertical wind effect is of decisive importance for the vertical transport of plasma and the enhancement of the atomic oxygen glow in the period of time considered. The phenomenon under study was associated with the midnight temperature maximum, which was first observed at 52° N. A method for calibrating optical measurements using radiophysical data is presented in the approximation of the dominant role of plasma parameter variations over neutral atmosphere parameter variations.
ionosphere, thermosphere, airglow, electron density, Fabry—Perot interferometer, incoherent scatter radar, numerical modeling, neutral wind, midnight temperature maximum
1. Alken P., Maus S., Emmert J., Drob D.P. Improved horizontal wind model HWM07 enables estimation of equatorial ionospheric electric fields from satellite magnetic measurements. Geophys. Res. Lett. 2008, vol. 35, no. 11. DOI:https://doi.org/10.1029/2008GL033580.
2. Alsatkin S.S., Medvedev A.V., Ratovsky K.G. Some peculiarities in the ionosphere dynamics near the ionization maximum from Irkutsk incoherent scatter radar data for low and moderate solar activities. Sol.-Terr. Phys. 2015, vol. 1, no. 3, pp. 28–36, DOI:https://doi.org/10.12737/11450.
3. Afraimovich E.L., Zherebtsov G.A., Perevalova N.P. Seismo-Ionospheric and Seismo-Electromagnetic Processes in Baikal Rift Valley. Novosibirsk, SB RAS, 2012, 304 p. (In Russian).
4. Berrington K.A., Burke P.G. Effective collision strengths for forbidden transitions in e − N and e − O scattering, Planet. Space Sci. 1981, vol. 29, iss. 3, pp. 377–381. DOI:https://doi.org/10.1016/0032-0633(81)90026-X.
5. Bilitza D., Pezzopane M., Truhlik V., et al. The International Reference Ionosphere model: A review and description of an ionospheric benchmark. Rev. Geophys. 2022, vol. 60, iss. 4. DOI:https://doi.org/10.1029/2022RG000792.
6. Bryunelli B.E., Namgaladze A.A. Ionosphere Physics. Moscow, Nauka, 1988, 526 p. (In Russian).
7. Cedric M.V., Podlesny A.V., Kurkin V.I. Three-position reception of signals with linear frequency modulation during slightly-inclined ionospheric sounding. Proc. of All-Russian Open Scientific Conference “Modern Problems of Waves Remote Sensing, Radiolocation, Propagation and Diffraction”], Murom, 2022, pp. 223–229. DOI:https://doi.org/10.24412/2304-0297-2022-1-223-229. (In Russian).
8. Colerico M.J., Mendillo M. The current state of investigations regarding the thermospheric midnight temperature maximum (MTM). J. Atmos. Sol.-Terr. Phys. 2002, vol. 64, pp. 1361–1369.
9. Doering J.P. Absolute differential and integral electron excitation cross sections for atomic oxygen: 9. Improved cross section for the ³P → ¹D transition from 4.0 to 30 eV. J. Geophys. Res. 1992, vol. 97, iss. A12, pp. 19531–19534. DOI:https://doi.org/10.1029/92JA02007.
10. Duann Y., Chang L.C., Chiu Y.-C., et al. Atomic oxygen ion retrieval from 630.0 nm airglow during geomagnetically quiet periods: a mid-latitude case study near Irkutsk. Geoscience. Lett. 2024, vol. 11, no. 55. DOI:https://doi.org/10.1186/s40562-024-00370-6.
11. Emmert J.T., Jones Jr. M., Siskind D.E., et al. NRLMSIS 2.1: An empirical model of nitric oxide incorporated into MSIS. J. Geophys. Res.: Space Phys. 2022, vol. 127, iss. 10. DOI:https://doi.org/10.1029/2022JA030896.
12. Garcia F.J., Kelley M.C., Makela J.J., Huang C.-S. Airglow observations of mesoscale low-velocity traveling ionospheric disturbances at midlatitudes. J. Geophys. Res. 2000, vol. 105, iss. A8, pp. 18407–18415. DOI:https://doi.org/10.1029/1999JA000305.
13. Grigoryev S.A., Latyshev K.S. Non-stationary processes in geomagnetic force tubes. Numerical methods analysis. Matematicheskoe modelirovanie [Mathematical modeling]. 1989, vol. 1, iss. 9, pp. 141–150. (In Russian).
14. Harding B.J., Gehrels T.W., Makela J.J. Nonlinear regression method for estimating neutral wind and temperature from Fabry-Perot interferometer data. App. Optics. 2014, vol. 53, iss. 4, pp. 666–673. DOI:https://doi.org/10.1364/AO.53.000666.
15. Hargreaves J. K. Upper Atmosphere and Solar-Terrestrial Interactions: Introduction to Near-Earth Space Physics. Leningrad, Gidrometeoizdat, 1982, 352 p. (In Russian).
16. Kernahan J.H., Pang P.H.-L. Experimental determination of absolute A coefficients for “forbidden” atomic oxygen lines. Can. J. Phys. 1975, vol. 53, iss. 5, pp. 455–458.
17. Korenkov Yu.N., Klimenko V.V., Förster M., et al. Global modelling study (GSM TIP) of the ionospheric effects of excited N2, convection and heat fluxes by comparison with EISCAT and satellite data for 31 July 1990. Ann. Geophys. 1996, vol. 14, iss. 12, pp. 1362–1374. DOI:https://doi.org/10.1007/s00585-996-1362-2.
18. Krinberg I.A., Tashcilin M.A. Ionosfera i plasmosfera [Ionosphere and Plasmasphere]. Moscow: Nauka, 1984, 189 p. (In Russian).
19. Link R., Cogger L. A reexamination of the OI 6300 angstrom nightglow. J. Geophys. Res. 1988, vol. 93, iss. A9, pp. 9883–9892.
20. Mantas G.P. Large 6300 Å airglow intensity enhancements observed in ionosphere heating experiments are excited by thermal electrons. J. Geophys. Res. 1994, vol. 99, iss. A5, pp. 8993–9002. DOI:https://doi.org/10.1029/94JA00347.
21. Mesquita R.L.A., Meriwether J.W., Makela J.J., et al. New results on the mid-latitude midnight temperature maximum. Ann. Geophys. 2018, vol. 36, iss. 2, pp. 541–553. DOI:https://doi.org/10.5194/angeo-36-541-2018.
22. Mikhalev A.V. Seasonal and interannual variations in the [OI] 630 nm atmospheric emission as derived from observations over Eastern Siberia in 2011–2017. Sol.-Terr. Phys. 2018, vol. 4, no. 2, pp. 96–101. DOI:https://doi.org/10.12737/stp-42201809.
23. Namgaladze A.A., Zaharov L.P., Namgaladze A.N. Ionosphere storms numerical modeling. Geomagnetizm i aeronomia [Geomagnetism and aeronomy]. 1981, vol. 21, iss. 2, pp. 259–265. (In Russian).
24. Otsuka Y., Kadota T., Shiokawa K., et al. Optical and radio measurements of a 630 nm airglow enhancement over Japan on 9 September 1999. J. Geophys. Res. 2003, vol. 108, iss. A6, p. 1252. DOI:https://doi.org/10.1029/2002JA009594.
25. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, vol. 107, iss. A12, p. 1468. DOI:https://doi.org/10.1029/2002JA009430.
26. Podlesny S.V., Devyatova E.V., Saunkin A.V., Vasilyev R.V. Comparing methods to estimate cloud cover over the Baikal natural territory in December 2020. Sol.-Terr. Phys. 2022, vol. 8, no. 4, pp. 102–109. DOI:https://doi.org/10.12737/stp-84202210.
27. Ratovsky K.G., Oinats A.V. Local empirical model of ionospheric plasma density derived from digisonde measurements at Irkutsk. Earth, Planets and Space. 2011, vol. 63, pp. 351–357. DOI:https://doi.org/10.5047/eps.2011.03.002.
28. Rishbeth H. Basic physics of the ionosphere: a tutorial review. J. of the Institution of Electronic and Radio Engineers. 1988, vol. 58, iss. 6S, pp. 207–223. DOI:https://doi.org/10.1049/jiere.1988.0060.
29. Shcherbakov A.A., Medvedev A.V., Kushnarev D.S., et al. Calculation of meridional neutral winds in middle latitudes from the Irkutsk Incoherent Scatter Radar data. Sol.-Terr. Phys. 2015, vol. 1, no. 3, pp. 37–48. DOI:https://doi.org/10.12737/10962.
30. Shefov N.N., Semenov A.I., Khomich V.Yu. Upper atmosphere airglow — its structure and dynamics indicator. Moscow: GEOS, 2006, 741 p. (In Russian).
31. Shepherd G.G., Siddiqi N.J., Wiens R.H., Zhang S. Airglow measurements of possible changes in the ionosphere and middle atmosphere. Adv. Space Res. 1997, vol. 20, iss. 11, pp. 2127–2135. DOI:https://doi.org/10.1016/S0273-1177(97)00605-4.
32. Tashchilin A.V., Leonovich L.A. Modeling nightglow in atomic oxygen red and green lines under moderate disturbed geomagnetic conditions at midlatitudes. Sol.-Terr. Phys. 2016, vol. 2, no. 4, pp. 76–84. DOI:https://doi.org/10.12737/21491.
33. Van Zandt T.E. III-3 — The neutral atmosphere and the quiet ionosphere. International Geophysics. 1967, vol. 11, iss. 1, pp. 509–559. DOI:https://doi.org/10.1016/B978-0-12-480301-5.50015-X.
34. Vasilyev R.V., Artamonov M.F., Beletsky A.B., et al. Registering upper atmosphere parameters in East Siberia with Fabry — Perot interferometer KEO Scientific “Arinae”. Sol.-Terr. Phys. 2017, vol. 3, no. 3, pp. 61–75. DOI:https://doi.org/10.12737/stp-33201707.
35. Vasilyev R.V., Artamonov M.F., Beletsky A.B., et al. Scientific goals of optical instruments of the National Heliogeophysical Complex. Sol.-Terr. Phys. 2020, vol. 6, iss. 2, pp. 84–97, DOI:https://doi.org/10.12737/stp-62202008.
36. Watanabe K., Ashour-Abdalla M., Sato T. A numerical model of magnetosphere-ionosphere coupling: Preliminary results. J. Geophys. Res. 1986, vol. 91, iss. A6, pp. 6973–6978. DOI:https://doi.org/10.1029/JA091iA06p06973.
37. Weinstock J. Theory of enhanced airglow during ionospheric modifications. J. Geophys. Res. 1975, vol. 80, iss. 31, pp. 4331–4345. DOI:https://doi.org/10.1029/JA080i031p04331.
38. Zherebtsov G.A. Complex of heliogeophysical instruments of new generation. Sol.-Terr. Phys. 2020, vol. 6, no. 2, pp. 6–18. DOI:https://doi.org/10.12737/stp-62202001.
39. Zherebtsov G.A., Zavorin A.V., Medvedev A.V., et al. Irkutsk incoherent scatter radar. Radiotehnika i elektronika [Radio Engineering and Electronics]. 2002, vol. 47, no. 11, pp. 1339–1345. (In Russian).
40. Zwillinger D., Kokoska S. CRC Standard Probability and Statistics. Tables and Formulae. New York, Chapman & Hall, 2000, 537 p.
41. URL: https://ckp-rf.ru/catalog/usu/4138180/ (accessed October 2, 2025).
42. URL: https://ckp-rf.ru/catalog/usu/77733/ (accessed October 2, 2025).



