ABOUT AN ALGORITHM FOR CONSTRUCTING AN ELLIPSE USING THE CHORDAL METHOD
Abstract and keywords
Abstract (English):
The article is devoted to the discussion of some aspects of computer graphics. The relevance of the research topic is due to the constant growth in demand for high-quality and efficient graphical visualization of data. In this regard, there is a need to understand how graphical systems work. The results of the research can be useful in creating various applications for scientific computing, computational modeling, and educational purposes. The purpose of the study is to implement an original algorithm for graphical construction of an ellipse and analyze the effectiveness of the proposed solution using standard graphical primitives in Python. The study attempts to propose original approaches to implementing individual basic elements of computer graphics and to investigate the effectiveness of the proposed algorithms in comparison with standard (library) solutions based on a specific programming language. Indeed, the quality of a graphical application's visualization directly depends on the algorithms chosen for manipulating graphical primitives. Different methods have their own advantages and disadvantages in terms of accuracy, performance, and application areas. This provides a fertile ground for exploring new ideas in the implementation of graphical objects and conducting a comparative analysis of such algorithms with standard solutions based on a specific programming language. The article focuses on two aspects of the research: the mathematical foundation of the proposed method and its computer implementation. It is well-known that ellipses offer greater flexibility in creating visual elements in gaming software. In particular, elliptic curves are used in image compression algorithms. Traditional compression methods based on rectangular blocks often produce imperfect results. Due to their anisotropy, ellipses allow for more accurate approximation of complex shapes in images. The proposed algorithm relies on the unique property of anisotropy, which allows for easy deformation of ellipses in the desired direction, enabling them to adapt more effectively to the specific features of the image being generated. The research described in the article clearly demonstrated that the ellipse drawing method proposed by the authors consistently outperforms the basic Python method on any number of curves in terms of runtime. The difference in the performance of the program runs allows us to make an assumption about the effectiveness of the original method in experiments with high computational load.

Keywords:
higher education, geometrographic disciplines, descriptive geometry, engineering graphics, computer graphics, computational graphics, mathematical surface unfolding
References

1. Akopyan A.V. Geometriya v kartinkah [Tekst] / A.V. Akopyan. — M.: MCNMO, 2011. — 130 s.

2. Akopyan A.V. Geometricheskie svoystva krivyh vtorogo poryadka [Tekst] / A.V. Akopyan, A.A. Zaslavskiy. — M.: MCNMO, 2007. — 136 s. EDN: https://elibrary.ru/QJSMMR

3. Boykov A.A. Geometricheskoe modelirovanie v sisteme distancionnogo obucheniya [Tekst] / A.A. Boykov // Geometriya i grafika. — 2014. — T. 2. — № 4. — C. 34–42. DOI:https://doi.org/10.12737/8295 EDN: https://elibrary.ru/TOEDEP

4. Volkov V.Ya. Elementy matematizacii teoreticheskih osnov nachertatel'noy geometrii [Tekst] / V.Ya. Volkov [i dr.] // Geometriya i grafika. — 2015. — T. 3. — № 1. —C. 3–15. — DOI:https://doi.org/10.12737/10453 EDN: https://elibrary.ru/RRSPOQ

5. Voloshinov D.V. Algoritmicheskiy kompleks dlya resheniya zadach s kvadrikami s primeneniem mnimyh geometricheskih obrazov / D.V. Voloshinov // Geometriya i grafika. — 2020. — T. 8. — № 2. — C. 3–32. — DOIhttps://doi.org/10.12737/2308-4898-2020-3-32 EDN: https://elibrary.ru/YUTTEE

6. Voloshinov D.V. Konstruktivnoe geometricheskoe modelirovanie. Teoriya, praktika, avtomatizaciya: monografiya [Tekst] / D.V. Voloshinov. — Saarbrücken: Lambert Academic Publishing, 2010. — 355 s.

7. Girsh A.G. Vzaimnye zadachi s konikami / A.G. Girsh // Geometriya i grafika. — 2020. — T. 8. — № 1. — S. 28–35. DOI:https://doi.org/10.12737/article_5dce651d80b827.49830821 DOI: https://doi.org/10.12737/2308-4898-2020-15-24; EDN: https://elibrary.ru/YWTSPY

8. Golovanov N.N. Geometricheskoe modelirovanie [Tekst] / N.N. Golovanov. — M.: Izd-vo fiziko-matematicheskoy literatury, 2002. — 472 s.

9. Grib N.V. Geometricheskie postroeniya figur i preobrazovaniya ploskosti [Tekst]: ucheb. posobie / N.V. Grib, M.N. Podoksenov. — Vitebsk: Id-vo VGU imeni P.M. Masherova, 2024. — 111 s. EDN: https://elibrary.ru/DQYBQR

10. Zingaro D. Python bez problem: reshaem real'nye zadachi i pishem poleznyy kod [Tekst] / D. Zingaro. — SPb.: Piter, 2023. — 336 s.

11. Korites B. Grafika na Python. Sozdanie 2D- i 3D-izobrazheniy dlya nauchnoy grafiki, i prezentaciy [Tekst] / B. Korites. — M.: DMK Press, 2024. — 378 s.

12. Korotkiy V.A. Graficheskie algoritmy rekonstrukcii krivoy vtorogo poryadka, zadannoy mnimymi elementami / V.A. Korotkiy, A.G. Girsh // Geometriya i grafika. 2016. — T. 4. — № 4. — C. 19–30. — DOI:https://doi.org/10.12737/22840 EDN: https://elibrary.ru/XKYFVV

13. Korotkiy V.A. Krivye vtorogo poryadka na ekrane komp'yutera [Tekst] / V.A. Korotkiy, E.A. Usmanova // Geometriya i grafika. — 2018. — T. 6. — № 2. — S. 100–112. DOI:https://doi.org/10.12737/article_5b55a829cee6c0.74112002 EDN: https://elibrary.ru/XVRAMP

14. Kulanin E.D. O nekotoryh konikah, svyazannyh s treugol'nikom [Tekst]: monografiya / E.D. Kulanin, A.G. Myakishev. — M.: ANO Institut logiki, redakciya «Arhimed», 2008. — 40 s.

15. Linii vtorogo poryadka. Ellips i ego kanonicheskoe uravnenie. Okruzhnost' [Elektronnyy resurs] // Vysshaya matematika — prosto i dostupno! internet-portal. — URL: http://mathprofi.ru/linii_vtorogo_poryadka_ ellips_i_okruzhnost.html (data obrascheniya: 20.06.2025).

16. Myuller Dzh. Dlya «chaynikov» Python. 2-e izd. [Tekst] / Dzh. Myuller. — M.: Dialektika, 2020. — 416 s.

17. Polyakov A.Yu. Metody i algoritmy komp'yuternoy grafiki v primerah na Visual C++ [Tekst]: ucheb. posobie / A.Yu. Polyakov. — SPb.: BHV-Peterburg, 2002. — 416 s.

18. Raspopova N.V. Reshenie zadach analiticheskoy geometrii v Python. Algebraicheskie krivye vtorogo poryadka: uchebno-metodicheskoe posobie [Tekst] / N.V. Raspopova, L.A. Svirkina, A.A. Ponomarev. — SPb.: VVM, 2023. — 64 s. — URL: https://pureportal.spbu. ru/files/116207288/2199_a5_.pdf (data obrascheniya: 20.06.2025) EDN: https://elibrary.ru/BFYFGF

19. Savelov A.A. Ploskie krivye: sistematika, svoystva, primeneniya [Tekst]: monografiya / A.A. Savelov. — M.: LIBROKOM, 2020. — 294 s.

20. Sal'kov N.A. Nachertatel'naya geometriya — baza dlya geometrii analiticheskoy [Tekst] / N.A. Sal'kov // Geometriya i grafika. — 2016. — T. 4. — № 1. — C. 44–54. DOI:https://doi.org/10.12737/18057 EDN: https://elibrary.ru/VSFWWV

21. Sal'kov N.A. Ellips: kasatel'naya i normal' / N.A. Sal'kov // Geometriya i grafika. — 2013. — T. 1. № 1. — C. 35–37. — DOI:https://doi.org/10.12737/470 EDN: https://elibrary.ru/RDFXPV

22. Smol'yanova E.G. Delenie kruga na tri ravnovelikie chasti pri pomoschi spirali Arhimeda [Tekst] / E.G. Smol'yanova, A.Yu. Ievleva // Potencial. Matematika, fizika, informatika. — 2015. — № 8. — S. 52–55. EDN: https://elibrary.ru/XYOORF

23. Smol'yanova E.G. Ob odnom sposobe postroeniya ellipsa [Tekst] / E.G. Smol'yanova // Matematicheskoe obrazovanie. — 2016. — № 4. — S. 42–47. — URL: https:// www.elibrary.ru/item.asp?id=28310736 (data obrascheniya:20.06.2025). EDN: https://elibrary.ru/XVNPWP

24. Smol'yanova E.G. Postroenie verz'ery An'ezi iz giperboly [Tekst] / E.G. Smol'yanova // XLIII Ogarevskie chteniya: Materialy nauch. konf.: v 3 ch. Ch. 2: Estestvennye nauki. — Saransk: Izd-vo Mordov. un-ta, 2015. S. 196–201. EDN: https://elibrary.ru/BRTQIA

25. Snizhko E.A. Komp'yuternaya geometriya i grafika [Tekst]: prakticheskoe posobie / E.A. Snizhko, K.V. Val'shteyn, A.A. Gladevich. — Sankt-Peterburg: Izd-vo BGTU «Voenmeh» im. D. F. Ustinova, 2024. — 134 s.

26. Styuart I. Ukroschenie beskonechnosti. Istoriya matematiki ot pervyh chisel do teorii haosa [Tekst] / I. Styuart; per. s angl. E. Pogosyan. — M.: Mann, Ivanov i Ferber, 2019. — 448 s.

27. Foli Dzh. Komp'yuternaya grafika: principy i praktika [Tekst] / D. Foli, A. van Dam; per. s angl. — 2-e izd. M.: Dialektika, 2020. — 1200 s.

28. Foli Dzh. Osnovy interaktivnoy mashinnoy grafiki [Tekst] / Dzh. Foli, A. van Dam, S. Feyner, Dzh. H'yuz. M.: Mir, 1993. — 848 s.

29. Shikin E.V. Komp'yuternaya grafika. Poligonal'nye modeli [Tekst] / E.V. Shikin, A.V. Boreskov. — M.: DIALOG-MIFI, 2001. — 464 s.

30. Shustikova T.V. Geometricheskie postroeniya krivyh liniy: dlya studentov tehnicheskih special'nostey ochnoy i zaochnoy form obucheniya, vypolnyayuschih graficheskoe zadanie «Postroenie ploskih krivyh» [Tekst]: uchebno-metodicheskoe posobie / T.V. Shustikova, I.V. Sergeeva; Inzhenernaya shkola DVFU. — Vladivostok: Izd-vo Dal'nevost. federal. un-ta, 2019. — 28 s.

Login or Create
* Forgot password?