Abstract and keywords
Abstract:
The article discusses the Martin attractor (hopalong), which is a type of computational algorithm that allows generating visual structures that can have applications in graphic design or generative art. The available sources (the earliest references to Martin attractors in foreign and russian literature, modern ones - software systems for construction, web-pages of mathematical systems Maple and Wolfram), the mathematical model of the generalized Martin attractor and its special case – hopalong are analyzed. The influence of parameters on the image of hopalong is briefly considered, the irregular nature of the relationship between the image of hopalong and its parameters is shown, a number of hypotheses are put forward that require further verification. Known methods of hopalong coloring are considered and new ones are proposed. A new fractal approach to constructing hopalongs and studying hopalong as a hyperfractal is proposed. The essence of the fractal approach is briefly described, in which iterative calculations are performed for individual points of the image, with each such point corresponding to a strictly defined combination of parameter values. The construction of hopalong images based on the fractal approach is shown. The influence of the choice of statistical criterion on the hopalong image is shown. Two such criteria are shown - the average value of the jump length (the length of the trajectory divided by the number of iterations) and the area of the overall rectangle of the figure. Examples of hopalong images as sections of a hyperfractal object are shown. The methodology for further research of hopalongs for graphic design and generative art problems is outlined in general terms. Examples of problems that can be set for a student research work are given.

Keywords:
algebraic fractals, hyperfractals, Martin attractor, hopalong, graphic design, generative art
References

1. Aleksandrov V.V. EVM: igra i tvorchestvo [Tekst] / V.V. Aleksandrov, A.I. Alekseev, A.I. Semenkov. — L.: Mashinostroenie. Leningradskoe otd-nie, 1989. — 128 s.

2. Boykov A.A. Generaciya fraktal'nyh tekstur na giperepyure v redaktore «Blender-3D» [Tekst] / A.A. Boykov, N.A. Boykova, A.E. Kolotev // Zhurnal estestvennonauchnyh issledovaniy. — 2024. — T. 9. — № 4. — S. 76–81. EDN: https://elibrary.ru/HYTJID

3. Boykov A.A. Geometricheskie modeli i algoritmy postroeniya sfericheskih secheniy giperfraktala [Tekst] / A.A. Boykov, I.I. Gudaev // Zhurnal estestvennonauchnyh issledovaniy. — 2020. — T. 5. — № 4. — S. 16–25. EDN: https://elibrary.ru/UETVKR

4. Boykov A.A. O sozdanii atlasa giperfraktala [Tekst] / A.A. Boykov, N.A. Boykova // Materialy XXIII Vseros. nauch.-prakt. konf. Vizual'naya kul'tura. Iskusstvo. Dizayn. Mediatehnologii. — Omsk: Izd-vo OmGTU, 2024. — S. 26–33. EDN: https://elibrary.ru/ASPIWY

5. Boykov A.A. O sozdanii fraktal'nyh obrazov dlya dizayna i poligrafii i nekotoryh geometricheskih obobscheniyah, svyazannyh s nimi [Tekst] / A.A. Boykov, E.V. Orlova, A.V. Chernova, A.A. Shkilevich // Materialy VIII Mezhdunarodnoy nauchno-prakticheskoy internet-konferencii Problemy kachestva graficheskoy podgotovki studentov v tehnicheskom vuze: tradicii i innovacii. Perm': Izd-vo PNIPU, 2019. — S. 325–339.

6. Boykov A.A. O studencheskoy nauchno-issledovatel'skoy rabote na geometro-graficheskih kafedrah [Tekst] / A.A. Boykov, A.V. Efremov, V.V. Rustamyan // Geometriya i grafika. — 2023. — T. 11. — № 4. — S. 61–75. — DOIhttps://doi.org/10.12737/2308-4898-2024-11-4-61-75 EDN: https://elibrary.ru/ALMTNH

7. Boykov A.A. O fraktal'nyh setkah [Tekst] / A.A. Boykov // Innovacionnye tehnologii v inzhenernoy grafike: problemy i perspektivy: sbornik trudov Mezhdunarodnoy nauchno-prakticheskoy konferencii 24 aprelya 2024 goda Brest, Respublika Belarus' Novosibirsk, Rossiyskaya Federaciya. — Brest: Izd-vo BrGTU, 2024. S. 17–20.

8. Boykov A.A. Ob odnom sposobe sozdaniya besshovnyh fraktal'nyh patternov dlya dizayna na osnove mnogomernogo podhoda / [Tekst] A.A. Boykov, I.I. Gudaev // Sbornik trudov Mezhdunarodnoy nauchno-prakticheskoy konferencii, Innovacionnye tehnologii v inzhenernoy grafike: problemy i perspektivy 23 aprelya 2021 goda, Brest, Respublika Belarus', Novosibirsk, Rossiyskaya Federaciya. — Novosibirsk: Izd-vo NGASU (Sibstrin), 2021. — 281 s.

9. Boykov A.A. Trehmernye modeli dlya predmetnogo dizayna na osnove algebraicheskih fraktalov [Tekst] / A.A. Boykov, I.I. Gudaev // Zhurnal estestvenno-nauchnyh issledovaniy. — 2021. — T. 6. — № 4. S. 53–56. EDN: https://elibrary.ru/AWRYQQ

10. Vyshnepol'skiy V.I. Metodicheskaya sistema provedeniya zanyatiy na kafedre «Inzhenernaya grafika» RTU MIREA [Tekst] / V.I. Vyshnepol'skiy, A.A. Boykov, K.T. Egiazaryan, N.S. Kadykova // Geometriya i grafika. — 2023. — T. 11. — № 1. — S. 23–34. — DOI:https://doi.org/10.12737/2308-4898-2023-11-1-23-34 EDN: https://elibrary.ru/BCSTZQ

11. Vyshnepol'skiy V.I. Nauchno-issledovatel'skaya rabota na kafedre «Inzhenernaya grafika» RTU MIREA [Tekst] / V.I. Vyshnepol'skiy, A.A. Boykov, K.T. Egiazaryan, A.V. Efremov // Geometriya i grafika. — 2023. T. 11. — № 1. — S. 70–85. — DOI:https://doi.org/10.12737/2308-48982023-11-1-70-85 DOI: https://doi.org/10.12737/2308-4898-2023-11-1-70-85; EDN: https://elibrary.ru/TGIBWG

12. Mandel'brot B. Fraktal'naya geometriya prirody [Tekst] / B. Mandel'brot. — M.: In-t komp'yuternyh issledovaniy, 2002. — 656 s.

13. Medvedeva M.N. Tvorcheskie zadaniya kak sredstvo motivacii samostoyatel'nosti studentov v cifrovom mire [Tekst] / M.N. Medvedeva, N.V. Kaygorodceva, T.N. Demchenko // Geometriya i grafika. — 2025. — T. 13. № 1. — S. 34–42. — DOI:https://doi.org/10.12737/2308-4898-2025-131-34-42 DOI: https://doi.org/10.12737/2308-4898-2025-13-1-34-42; EDN: https://elibrary.ru/ARVPSC

14. Milnor Dzh. Golomorfnaya dinamika [Tekst] / Dzh. Milnor. — Izhevsk: Hegulyarnaya i haotichnaya dinamika, 2000. — 320 s.

15. Orlova E.V. Issledovanie algebraicheskih fraktalov s pozicii mnogomernoy geometrii [Tekst] / E.V. Orlova, A.V. Chernova // Zhurnal estestvenno-nauchnyh issledovaniy. — 2024. — T. 9. — № 4. — S. 64–71. EDN: https://elibrary.ru/QTHAIE

16. Paytgen H. Krasota fraktalov. Obrazy kompleksnyh dinamicheskih sistem [Tekst] / H. Paytgen, P. Rihter. M.: Mir, 1993. — 176 s.

17. Shkilevich A.A. K issledovaniyu fraktal'nyh obrazov mnozhestv Zhulia-Mandel'brota [Tekst] / A.A. Shkilevich // Zhurnal estestvenno-nauchnyh issledovaniy. 2024. — T. 9. — № 2. — S. 31–37. EDN: https://elibrary.ru/YDBZJQ

18. Dewdney A.K. Computer recreations [Tekst] / A.K. Dewdney // Scientific American. 1986. V. 255. I. 3. Pp. 14–23. DOI: https://doi.org/10.1038/scientificamerican0986-14

19. Hopalong Attractor // MapleSoft [site]. URL: https:// www.maplesoft.com/support/help/Maple/view.aspx?path=MathApps/HopalongAttractor (data obrascheniya: 20.06.2025).

20. Martin B. Graphic Potential of Recursive Functions // Computers in Art, Design and Animation. New York: Springer-Verlag, 1989, pp. 109–129. DOI: https://doi.org/10.1007/978-1-4612-4538-4_8

21. Mitch Richling: Hopalong Fractals // www.mitchr.me [site]. URL: https://www.mitchr.me/SS/barrymartin/index.html (data obrascheniya: 20.06.2025).

22. Orbits of the Hopalong Map // Wolfram Demonstrations Project [site]. URL: https://demonstrations.wolfram.com/ OrbitsOfTheHopalongMap (data obrascheniya: 20.06.2025).

23. Ratwolfzero / hopalong_python: Calculate & Visualize the Hopalong Attractor with Python // github.com [site]. URL: https://github.com/ratwolfzero/hopalong_python (data obrascheniya: 20.06.2025).

Login or Create
* Forgot password?