The effect of maneuvering the propulsion of a wheeled forestry vehicle on its maneuverability in difficult geotechnical conditions
Abstract and keywords
Abstract (English):
The conducted research is aimed at solving the urgent scientific and practical problem of the operation of log-ging equipment on waterlogged soils, which are typical for more than 60% of the territory of the forest fund of the Rus-sian Federation. A complex mathematical model has been developed for the formation of tangential stresses in a soil mass during propulsion maneuvering, taking into account key parameters: the angle of rotation, the weight of the ma-chine, and the physical and mechanical properties of the soil. In the course of the study, new criteria for the effectiveness of shifting the inter-track mass of soil were estab-lished, based on the analytical ratio of the shear force pulses and the mass of the shifted soil. The numerical analysis demonstrates that targeted maneuvering with rotation angles of 15-20° or more makes it possible to ensure effective destruction of the inter-track space even at critical ground humidity up to 35%. Special attention is paid to the analysis of the cyclic effect of machinery on the ground during multiple passes. Practical recommendations have been developed to optimize the operating modes of forest machinery operators, in-cluding the choice of maneuvering angles and driving trajectories depending on soil moisture and the number of passes. The results obtained have significant practical value for the logging industry, making it possible to reduce envi-ronmental damage from soil cover damage by 20-25% and increase the operational efficiency of machinery by 15-20% by reducing downtime and increasing maintenance periods.

Keywords:
forest machinery, maneuvering of forest machinery, soil deformation, track formation, geotechnical conditions
Text
Text (PDF): Read Download
References

1. Groot, R., Brander, L., van der Ploeg, S., Costanza, R., Bernard, F., Braat, L., et al. (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services, *1*, 50–61. http://dx.doi.org/10.1016/j.ecoser.2012.07.005

2. Holden, S. R., & Treseder, K. K. (2013). A meta-analysis of soil microbial biomass responses to forest disturbances. Frontiers in Microbiology, *4*, 163. http://dx.doi.org/10.3389/fmicb.2013.00163

3. Lidskog, R., Sundqvist, G., Kall, A.-S., Sandin, P., & Larsson, S. (2013). Intensive forestry in Sweden: stakeholders’ evaluation of benefits and risk. Journal of Integrative Environmental Sciences, *10*(2), 145–160. http://dx.doi.org/10.1080/1943815X.2013.841261

4. Acharya, R. P., Maraseni, T., & Cockfeld, G. (2019). Global trend of forest ecosystem services valuation – an analysis of publications. Ecosystem Services, *39*, 100979. http://dx.doi.org/10.1016/j.ecoser.2019.100979

5. Frey, B., Kremer, J., Rüdt, A., Sciacca, S., Matthies, D., & Lüscher, P. (2009). Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. European Journal of Soil Biology, *45*(4), 312–320. https://doi.org/10.1016/J.EJSOBI.2009.05.006

6. Picchio, R., Neri, F., Petrini, E., Verani, S., Marchi, E., & Certini, G. (2012). Machinery-induced soil compaction in thinning two pine stands in central Italy. Forest Ecology and Management, *285*, 38–43. http://dx.doi.org/10.1016/j.foreco.2012.08.008

7. Vossbrink, J., & Horn, R. (2004). Modern forestry vehicles and their impact on soil physical properties. European Journal of Forest Research, *123*(3), 259–267. http://dx.doi.org/10.1007/s10342-004-0040-8

8. Horn, R., Vossbrink, J., Peth, S., & Becker, S. (2007). Impact of modern forest vehicles on soil physical properties. Forest Ecology and Management, *248*(1–2), 56–63. http://dx.doi.org/10.1016/j.foreco.2007.02.037

9. Ramantswana, M., Guerra, S. P. S., & Ersson, B. T. (2020). Advances in the mechanization of regenerating plantation forests: a review. Current Forestry Reports, *6*, 143–158. https://link.springer.com/article/10.1007/s40725-020-00114-7

10. Cambi, M., Certini, G., Neri, F., & Marchi, E. (2015). The impact of heavy traffic on forest soils: a review. Forest Ecology and Management, *338*, 124–138. http://dx.doi.org/10.1016/j.foreco.2014.11.022

11. Powers, R. F., Andrew Scott, D., Sanchez, F. G., Voldseth, R. A., Page-Dumroese, D., Eliof, J. D., et al. (2005). The North American long-term soil productivity experiment: findings from the first decade of research. Forest Ecology and Management, *220*(1–3), 31–50. https://doi.org/10.1016/j.foreco.2005.08.003

12. Agherkakli, B., Najaf, A., & Sadeghi, S. H. (2010). Ground based operation effects on soil disturbance by steel tracked skidder in a steep slope of forest. Journal of Forest Science (Prague), *56*(6), 278–284. http://dx.doi.org/10.17221/93/2009-JFS

13. DeArmond, D., Ferraz, J. B. S., Emmert, F., Lima, A. J. N., & Higuchi, N. (2020). An assessment of soil compaction after logging operations in Central Amazonia. Forest Science, *66*(2), 230–241. http://dx.doi.org/10.1093/forsci/fxz070

14. Mariotti, B., Hoshika, Y., Cambi, M., Marra, E., Feng, Z., Paoletti, E., et al. (2020). Vehicle-induced compaction of forest soil affects plant morphological and physiological attributes: A meta-analysis. Forest Ecology and Management, *462*, 118004. http://dx.doi.org/10.1016/j.foreco.2020.118004

15. Labelle, E. R., & Kammermeier, M. (2019). Above- and belowground growth response of Picea abies seedlings exposed to varying levels of soil relative bulk density. European Journal of Forest Research, *138*(4), 705–722. https://link.springer.com/article/10.1007/s10342-019-01201-6

16. Laschi, A., Marchi, E., & González-García, S. (2016). Forest operations in coppice: Environmental assessment of two different logging methods. Science of The Total Environment, *562*, 493–503. http://dx.doi.org/10.1016/j.scitotenv.2016.04.041

17. Naghdi, R., Solgi, A., Labelle, E. R., & Nikooy, M. (2020). Combined effects of soil texture and machine operating trail gradient on changes in forest soil physical properties during ground-based skidding. Pedosphere, *30*(4), 508–516. https://doi.org/10.1016/S1002-0160(17)60428-4

18. Anisimov, G. M., & Bol'shakov, B. M. (1998). Osnovy minimizatsii uplotneniia pochvy trelevochnymi sistemami [Fundamentals of minimizing soil compaction by skidding systems]. SPbGLTA. (in Russ.)

19. Kaliashov, V. A., Shapiro, V. Ya., Grigor'ev, I. V., Kunitskaia, O. A., Dmitriev, A. S., & Grigor'eva, O. I. (2023). Geotekhnicheskoe obosnovanie rabotosposobnosti trelevochnykh volokov i tekhnologicheskikh koridorov na sklonakh ottaivaiushchikh pochvogruntov pri rabote lesnykh mashin s kolesnym i poligusenichnym dvizhitelem [Geotechnical justification of the performance of skidding trails and technological corridors on slopes of thawing soils during the operation of forest machines with wheeled and semi-tracked propulsion systems]. Resources and Technology, *20*(3), 15–31. (in Russ.)

20. Rudov, S. E., Shapiro, V. Ya., Grigor'ev, I. V., Kunitskaia, O. A., & Grigor'eva, O. I. (2020). Issledovanie protsessa razrusheniia merzlykh i ottaivaiushchikh pochvogruntov pri vozdeistvii trelevochnoi sistemy [Study of the process of destruction of frozen and thawing soils under the impact of a skidding system]. Izvestiia vysshikh uchebnykh zavedenii. Lesnoi zhurnal, (2)(374), 101–117. (in Russ.)

21. Rudov, S. E., Shapiro, V. Ya., Grigor'ev, I. V., Kunitskaia, O. A., Grigor'ev, M. F., & Puchnin, A. N. (2019). Osobennosti ucheta sostoianiia massiva merzlykh gruntov pri tsiklicheskom vzaimodeistvii s trelevochnoi sistemoi [Peculiarities of accounting for the state of the frozen ground mass during cyclic interaction with the skidding system]. Lesotekhnicheskii zhurnal, *9*(1)(33), 116–128. (in Russ.)

22. Rudov, S. E., Shapiro, V. Ya., Grigor'ev, I. V., Kunitskaia, O. A., & Grigor'eva, O. I. (2021). Modelirovanie vzaimodeistviia lesnykh mashin s pochvogruntom pri rabote na sklonakh [Modeling the interaction of forest machines with soil on slopes]. Izvestiia vysshikh uchebnykh zavedenii. Lesnoi zhurnal, (6)(384), 121–134. (in Russ.)

23. Tsytovich, N. A. (1983). Mekhanika merzlykh gruntov [Mechanics of frozen soils]. Vysshaia shkola. (in Russ.)

24. Shapiro, V. Ya., Grigor'ev, I. V., Lepilin, D. V., & Zhukova, A. I. (2010). Modelirovanie uplotnenie pochvogrunta v bokovykh polosakh trelevochnogo voloka s uchetom izmenchivosti trassy dvizheniia [Modeling of soil compaction in the lateral strips of the skidding trail taking into account the variability of the route]. Uchenye zapiski Petrozavodskogo gosudarstvennogo universiteta, (6)(111), 61–64. (in Russ.)

25. Shapiro, V. Ya., Grigor'ev, I. V., Rudov, S. E., & Zhukova, A. I. (2010). Model' tsiklicheskogo uplotneniia grunta v polosakh, prilegaiushchikh k trelevochnomu voloku [A model of cyclic soil compaction in strips adjacent to the skid trail]. Vestnik KrasGAU, (2)(41), 8–14. (in Russ.)


Login or Create
* Forgot password?